• Java并发包中的同步队列SynchronousQueue实现原理


    转自: http://ifeve.com/java-synchronousqueue/

    介绍

    Java 6的并发编程包中的SynchronousQueue是一个没有数据缓冲的BlockingQueue,生产者线程对其的插入操作put必须等待消费者的移除操作take,反过来也一样。

    不像ArrayBlockingQueue或LinkedListBlockingQueue,SynchronousQueue内部并没有数据缓存空间,你不能调用peek()方法来看队列中是否有数据元素,因为数据元素只有当你试着取走的时候才可能存在,不取走而只想偷窥一下是不行的,当然遍历这个队列的操作也是不允许的。队列头元素是第一个排队要插入数据的线程,而不是要交换的数据。数据是在配对的生产者和消费者线程之间直接传递的,并不会将数据缓冲数据到队列中。可以这样来理解:生产者和消费者互相等待对方,握手,然后一起离开。

    SynchronousQueue的一个使用场景是在线程池里。Executors.newCachedThreadPool()就使用了SynchronousQueue,这个线程池根据需要(新任务到来时)创建新的线程,如果有空闲线程则会重复使用,线程空闲了60秒后会被回收。

    实现原理

    阻塞队列的实现方法有许多:

    阻塞算法实现

    阻塞算法实现通常在内部采用一个锁来保证多个线程中的put()和take()方法是串行执行的。采用锁的开销是比较大的,还会存在一种情况是线程A持有线程B需要的锁,B必须一直等待A释放锁,即使A可能一段时间内因为B的优先级比较高而得不到时间片运行。所以在高性能的应用中我们常常希望规避锁的使用。

    01 public class NativeSynchronousQueue<E> {
    02     boolean putting = false;
    03     E item = null;
    04  
    05     public synchronized E take() throws InterruptedException {
    06         while (item == null)
    07             wait();
    08         E e = item;
    09         item = null;
    10         notifyAll();
    11         return e;
    12     }
    13  
    14     public synchronized void put(E e) throws InterruptedException {
    15         if (e==null) return;
    16         while (putting)
    17             wait();
    18         putting = true;
    19         item = e;
    20         notifyAll();
    21         while (item!=null)
    22             wait();
    23         putting = false;
    24         notifyAll();
    25     }
    26 }

    信号量实现

    经典同步队列实现采用了三个信号量,代码很简单,比较容易理解:

    01 public class SemaphoreSynchronousQueue<E> {
    02     E item = null;
    03     Semaphore sync = new Semaphore(0);
    04     Semaphore send = new Semaphore(1);
    05     Semaphore recv = new Semaphore(0);
    06  
    07     public E take() throws InterruptedException {
    08         recv.acquire();
    09         E x = item;
    10         sync.release();
    11         send.release();
    12         return x;
    13     }
    14  
    15     public void put (E x) throws InterruptedException{
    16         send.acquire();
    17         item = x;
    18         recv.release();
    19         sync.acquire();
    20     }
    21 }

    在多核机器上,上面方法的同步代价仍然较高,操作系统调度器需要上千个时间片来阻塞或唤醒线程,而上面的实现即使在生产者put()时已经有一个消费者在等待的情况下,阻塞和唤醒的调用仍然需要。

    Java 5实现

    01 public class Java5SynchronousQueue<E> {
    02     ReentrantLock qlock = new ReentrantLock();
    03     Queue waitingProducers = new Queue();
    04     Queue waitingConsumers = new Queue();
    05  
    06     static class Node extends AbstractQueuedSynchronizer {
    07         E item;
    08         Node next;
    09  
    10         Node(Object x) { item = x; }
    11         void waitForTake() { /* (uses AQS) */ }
    12            E waitForPut() { /* (uses AQS) */ }
    13     }
    14  
    15     public E take() {
    16         Node node;
    17         boolean mustWait;
    18         qlock.lock();
    19         node = waitingProducers.pop();
    20         if(mustWait = (node == null))
    21            node = waitingConsumers.push(null);
    22          qlock.unlock();
    23  
    24         if (mustWait)
    25            return node.waitForPut();
    26         else
    27             return node.item;
    28     }
    29  
    30     public void put(E e) {
    31          Node node;
    32          boolean mustWait;
    33          qlock.lock();
    34          node = waitingConsumers.pop();
    35          if (mustWait = (node == null))
    36              node = waitingProducers.push(e);
    37          qlock.unlock();
    38  
    39          if (mustWait)
    40              node.waitForTake();
    41          else
    42             node.item = e;
    43     }
    44 }

    Java 5的实现相对来说做了一些优化,只使用了一个锁,使用队列代替信号量也可以允许发布者直接发布数据,而不是要首先从阻塞在信号量处被唤醒。

    Java6实现

    Java 6的SynchronousQueue的实现采用了一种性能更好的无锁算法 — 扩展的“Dual stack and Dual queue”算法。性能比Java5的实现有较大提升。竞争机制支持公平和非公平两种:非公平竞争模式使用的数据结构是后进先出栈(Lifo Stack);公平竞争模式则使用先进先出队列(Fifo Queue),性能上两者是相当的,一般情况下,Fifo通常可以支持更大的吞吐量,但Lifo可以更大程度的保持线程的本地化。

    代码实现里的Dual Queue或Stack内部是用链表(LinkedList)来实现的,其节点状态为以下三种情况:

    1. 持有数据 – put()方法的元素
    2. 持有请求 – take()方法

    这个算法的特点就是任何操作都可以根据节点的状态判断执行,而不需要用到锁。

    其核心接口是Transfer,生产者的put或消费者的take都使用这个接口,根据第一个参数来区别是入列(栈)还是出列(栈)。

    01 /**
    02     * Shared internal API for dual stacks and queues.
    03     */
    04    static abstract class Transferer {
    05        /**
    06         * Performs a put or take.
    07         *
    08         * @param e if non-null, the item to be handed to a consumer;
    09         *          if null, requests that transfer return an item
    10         *          offered by producer.
    11         * @param timed if this operation should timeout
    12         * @param nanos the timeout, in nanoseconds
    13         * @return if non-null, the item provided or received; if null,
    14         *         the operation failed due to timeout or interrupt --
    15         *         the caller can distinguish which of these occurred
    16         *         by checking Thread.interrupted.
    17         */
    18        abstract Object transfer(Object e, boolean timed, long nanos);
    19    }

    TransferQueue实现如下(摘自Java 6源代码),入列和出列都基于Spin和CAS方法:

    01 /**
    02     * Puts or takes an item.
    03     */
    04    Object transfer(Object e, boolean timed, long nanos) {
    05        /* Basic algorithm is to loop trying to take either of
    06         * two actions:
    07         *
    08         * 1. If queue apparently empty or holding same-mode nodes,
    09         *    try to add node to queue of waiters, wait to be
    10         *    fulfilled (or cancelled) and return matching item.
    11         *
    12         * 2. If queue apparently contains waiting items, and this
    13         *    call is of complementary mode, try to fulfill by CAS'ing
    14         *    item field of waiting node and dequeuing it, and then
    15         *    returning matching item.
    16         *
    17         * In each case, along the way, check for and try to help
    18         * advance head and tail on behalf of other stalled/slow
    19         * threads.
    20         *
    21         * The loop starts off with a null check guarding against
    22         * seeing uninitialized head or tail values. This never
    23         * happens in current SynchronousQueue, but could if
    24         * callers held non-volatile/final ref to the
    25         * transferer. The check is here anyway because it places
    26         * null checks at top of loop, which is usually faster
    27         * than having them implicitly interspersed.
    28         */
    29  
    30        QNode s = null// constructed/reused as needed
    31        boolean isData = (e != null);
    32  
    33        for (;;) {
    34            QNode t = tail;
    35            QNode h = head;
    36            if (t == null || h == null)         // saw uninitialized value
    37                continue;                       // spin
    38  
    39            if (h == t || t.isData == isData) { // empty or same-mode
    40                QNode tn = t.next;
    41                if (t != tail)                  // inconsistent read
    42                    continue;
    43                if (tn != null) {               // lagging tail
    44                    advanceTail(t, tn);
    45                    continue;
    46                }
    47                if (timed &amp;&amp; nanos &lt;= 0)        // can't wait
    48                    return null;
    49                if (s == null)
    50                    s = new QNode(e, isData);
    51                if (!t.casNext(null, s))        // failed to link in
    52                    continue;
    53  
    54                advanceTail(t, s);              // swing tail and wait
    55                Object x = awaitFulfill(s, e, timed, nanos);
    56                if (x == s) {                   // wait was cancelled
    57                    clean(t, s);
    58                    return null;
    59                }
    60  
    61                if (!s.isOffList()) {           // not already unlinked
    62                    advanceHead(t, s);          // unlink if head
    63                    if (x != null)              // and forget fields
    64                        s.item = s;
    65                    s.waiter = null;
    66                }
    67                return (x != null)? x : e;
    68  
    69            else {                            // complementary-mode
    70                QNode m = h.next;               // node to fulfill
    71                if (t != tail || m == null || h != head)
    72                    continue;                   // inconsistent read
    73  
    74                Object x = m.item;
    75                if (isData == (x != null) ||    // m already fulfilled
    76                    x == m ||                   // m cancelled
    77                    !m.casItem(x, e)) {         // lost CAS
    78                    advanceHead(h, m);          // dequeue and retry
    79                    continue;
    80                }
    81  
    82                advanceHead(h, m);              // successfully fulfilled
    83                LockSupport.unpark(m.waiter);
    84                return (x != null)? x : e;
    85            }
    86        }
    87    }
  • 相关阅读:
    openvswitch 监听端口变化
    Python set() 函数
    openstack-neutron-OVS agent分析
    openvswitch ovs-appctl 使用
    python setup.py install 报错【Project namexxx was given, but was not able to be found.】
    openstack nova 创建虚机流程
    Linux kernel 模块 hello 测试
    openvswitch 流表操作
    软件测试开发之第一篇(测试文档)
    Java工具之Myeclipse程序调试
  • 原文地址:https://www.cnblogs.com/bluecoder/p/3792919.html
Copyright © 2020-2023  润新知