转自: http://ifeve.com/java-synchronousqueue/
介绍
Java 6的并发编程包中的SynchronousQueue是一个没有数据缓冲的BlockingQueue,生产者线程对其的插入操作put必须等待消费者的移除操作take,反过来也一样。
不像ArrayBlockingQueue或LinkedListBlockingQueue,SynchronousQueue内部并没有数据缓存空间,你不能调用peek()方法来看队列中是否有数据元素,因为数据元素只有当你试着取走的时候才可能存在,不取走而只想偷窥一下是不行的,当然遍历这个队列的操作也是不允许的。队列头元素是第一个排队要插入数据的线程,而不是要交换的数据。数据是在配对的生产者和消费者线程之间直接传递的,并不会将数据缓冲数据到队列中。可以这样来理解:生产者和消费者互相等待对方,握手,然后一起离开。
SynchronousQueue的一个使用场景是在线程池里。Executors.newCachedThreadPool()就使用了SynchronousQueue,这个线程池根据需要(新任务到来时)创建新的线程,如果有空闲线程则会重复使用,线程空闲了60秒后会被回收。
实现原理
阻塞队列的实现方法有许多:
阻塞算法实现
阻塞算法实现通常在内部采用一个锁来保证多个线程中的put()和take()方法是串行执行的。采用锁的开销是比较大的,还会存在一种情况是线程A持有线程B需要的锁,B必须一直等待A释放锁,即使A可能一段时间内因为B的优先级比较高而得不到时间片运行。所以在高性能的应用中我们常常希望规避锁的使用。
01 |
public class NativeSynchronousQueue<E> { |
02 |
boolean putting = false; |
03 |
E item = null; |
04 |
05 |
public synchronized E take() throws InterruptedException { |
06 |
while (item == null) |
07 |
wait(); |
08 |
E e = item; |
09 |
item = null; |
10 |
notifyAll(); |
11 |
return e; |
12 |
} |
13 |
14 |
public synchronized void put(E e) throws InterruptedException { |
15 |
if (e==null) return; |
16 |
while (putting) |
17 |
wait(); |
18 |
putting = true; |
19 |
item = e; |
20 |
notifyAll(); |
21 |
while (item!=null) |
22 |
wait(); |
23 |
putting = false; |
24 |
notifyAll(); |
25 |
} |
26 |
} |
信号量实现
经典同步队列实现采用了三个信号量,代码很简单,比较容易理解:
01 |
public class SemaphoreSynchronousQueue<E> { |
02 |
E item = null ; |
03 |
Semaphore sync = new Semaphore( 0 ); |
04 |
Semaphore send = new Semaphore( 1 ); |
05 |
Semaphore recv = new Semaphore( 0 ); |
06 |
07 |
public E take() throws InterruptedException { |
08 |
recv.acquire(); |
09 |
E x = item; |
10 |
sync.release(); |
11 |
send.release(); |
12 |
return x; |
13 |
} |
14 |
15 |
public void put (E x) throws InterruptedException{ |
16 |
send.acquire(); |
17 |
item = x; |
18 |
recv.release(); |
19 |
sync.acquire(); |
20 |
} |
21 |
} |
在多核机器上,上面方法的同步代价仍然较高,操作系统调度器需要上千个时间片来阻塞或唤醒线程,而上面的实现即使在生产者put()时已经有一个消费者在等待的情况下,阻塞和唤醒的调用仍然需要。
Java 5实现
01 |
public class Java5SynchronousQueue<E> { |
02 |
ReentrantLock qlock = new ReentrantLock(); |
03 |
Queue waitingProducers = new Queue(); |
04 |
Queue waitingConsumers = new Queue(); |
05 |
06 |
static class Node extends AbstractQueuedSynchronizer { |
07 |
E item; |
08 |
Node next; |
09 |
10 |
Node(Object x) { item = x; } |
11 |
void waitForTake() { /* (uses AQS) */ } |
12 |
E waitForPut() { /* (uses AQS) */ } |
13 |
} |
14 |
15 |
public E take() { |
16 |
Node node; |
17 |
boolean mustWait; |
18 |
qlock.lock(); |
19 |
node = waitingProducers.pop(); |
20 |
if (mustWait = (node == null )) |
21 |
node = waitingConsumers.push( null ); |
22 |
qlock.unlock(); |
23 |
24 |
if (mustWait) |
25 |
return node.waitForPut(); |
26 |
else |
27 |
return node.item; |
28 |
} |
29 |
30 |
public void put(E e) { |
31 |
Node node; |
32 |
boolean mustWait; |
33 |
qlock.lock(); |
34 |
node = waitingConsumers.pop(); |
35 |
if (mustWait = (node == null )) |
36 |
node = waitingProducers.push(e); |
37 |
qlock.unlock(); |
38 |
39 |
if (mustWait) |
40 |
node.waitForTake(); |
41 |
else |
42 |
node.item = e; |
43 |
} |
44 |
} |
Java 5的实现相对来说做了一些优化,只使用了一个锁,使用队列代替信号量也可以允许发布者直接发布数据,而不是要首先从阻塞在信号量处被唤醒。
Java6实现
Java 6的SynchronousQueue的实现采用了一种性能更好的无锁算法 — 扩展的“Dual stack and Dual queue”算法。性能比Java5的实现有较大提升。竞争机制支持公平和非公平两种:非公平竞争模式使用的数据结构是后进先出栈(Lifo Stack);公平竞争模式则使用先进先出队列(Fifo Queue),性能上两者是相当的,一般情况下,Fifo通常可以支持更大的吞吐量,但Lifo可以更大程度的保持线程的本地化。
代码实现里的Dual Queue或Stack内部是用链表(LinkedList)来实现的,其节点状态为以下三种情况:
- 持有数据 – put()方法的元素
- 持有请求 – take()方法
- 空
这个算法的特点就是任何操作都可以根据节点的状态判断执行,而不需要用到锁。
其核心接口是Transfer,生产者的put或消费者的take都使用这个接口,根据第一个参数来区别是入列(栈)还是出列(栈)。
01 |
/** |
02 |
* Shared internal API for dual stacks and queues. |
03 |
*/ |
04 |
static abstract class Transferer { |
05 |
/** |
06 |
* Performs a put or take. |
07 |
* |
08 |
* @param e if non-null, the item to be handed to a consumer; |
09 |
* if null, requests that transfer return an item |
10 |
* offered by producer. |
11 |
* @param timed if this operation should timeout |
12 |
* @param nanos the timeout, in nanoseconds |
13 |
* @return if non-null, the item provided or received; if null, |
14 |
* the operation failed due to timeout or interrupt -- |
15 |
* the caller can distinguish which of these occurred |
16 |
* by checking Thread.interrupted. |
17 |
*/ |
18 |
abstract Object transfer(Object e, boolean timed, long nanos); |
19 |
} |
TransferQueue实现如下(摘自Java 6源代码),入列和出列都基于Spin和CAS方法:
01 |
/** |
02 |
* Puts or takes an item. |
03 |
*/ |
04 |
Object transfer(Object e, boolean timed, long nanos) { |
05 |
/* Basic algorithm is to loop trying to take either of |
06 |
* two actions: |
07 |
* |
08 |
* 1. If queue apparently empty or holding same-mode nodes, |
09 |
* try to add node to queue of waiters, wait to be |
10 |
* fulfilled (or cancelled) and return matching item. |
11 |
* |
12 |
* 2. If queue apparently contains waiting items, and this |
13 |
* call is of complementary mode, try to fulfill by CAS'ing |
14 |
* item field of waiting node and dequeuing it, and then |
15 |
* returning matching item. |
16 |
* |
17 |
* In each case, along the way, check for and try to help |
18 |
* advance head and tail on behalf of other stalled/slow |
19 |
* threads. |
20 |
* |
21 |
* The loop starts off with a null check guarding against |
22 |
* seeing uninitialized head or tail values. This never |
23 |
* happens in current SynchronousQueue, but could if |
24 |
* callers held non-volatile/final ref to the |
25 |
* transferer. The check is here anyway because it places |
26 |
* null checks at top of loop, which is usually faster |
27 |
* than having them implicitly interspersed. |
28 |
*/ |
29 |
30 |
QNode s = null ; // constructed/reused as needed |
31 |
boolean isData = (e != null ); |
32 |
33 |
for (;;) { |
34 |
QNode t = tail; |
35 |
QNode h = head; |
36 |
if (t == null || h == null ) // saw uninitialized value |
37 |
continue ; // spin |
38 |
39 |
if (h == t || t.isData == isData) { // empty or same-mode |
40 |
QNode tn = t.next; |
41 |
if (t != tail) // inconsistent read |
42 |
continue ; |
43 |
if (tn != null ) { // lagging tail |
44 |
advanceTail(t, tn); |
45 |
continue ; |
46 |
} |
47 |
if (timed && nanos <= 0 ) // can't wait |
48 |
return null ; |
49 |
if (s == null ) |
50 |
s = new QNode(e, isData); |
51 |
if (!t.casNext( null , s)) // failed to link in |
52 |
continue ; |
53 |
54 |
advanceTail(t, s); // swing tail and wait |
55 |
Object x = awaitFulfill(s, e, timed, nanos); |
56 |
if (x == s) { // wait was cancelled |
57 |
clean(t, s); |
58 |
return null ; |
59 |
} |
60 |
61 |
if (!s.isOffList()) { // not already unlinked |
62 |
advanceHead(t, s); // unlink if head |
63 |
if (x != null ) // and forget fields |
64 |
s.item = s; |
65 |
s.waiter = null ; |
66 |
} |
67 |
return (x != null )? x : e; |
68 |
69 |
} else { // complementary-mode |
70 |
QNode m = h.next; // node to fulfill |
71 |
if (t != tail || m == null || h != head) |
72 |
continue ; // inconsistent read |
73 |
74 |
Object x = m.item; |
75 |
if (isData == (x != null ) || // m already fulfilled |
76 |
x == m || // m cancelled |
77 |
!m.casItem(x, e)) { // lost CAS |
78 |
advanceHead(h, m); // dequeue and retry |
79 |
continue ; |
80 |
} |
81 |
82 |
advanceHead(h, m); // successfully fulfilled |
83 |
LockSupport.unpark(m.waiter); |
84 |
return (x != null )? x : e; |
85 |
} |
86 |
} |
87 |
} |