• 算法-动态规划


    算法-动态规划

    定义

    分治法:将问题划分为不相交的子问题,递归的求解子问题,在将它们的解组合起来,求出原问题的解。

    动态规划:通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

    动态规划和递归的最大的区别,就是在碰到重叠子问题时,是否只需要计算一次。

    过程

    1. 拆分子问题,把整体问题拆成可以用递推或是递归实现的小问题,在某一状态下最佳选择是什么
    2. 定义问题和状态之间的关系,寻找到状态转移方程
    3. 进行编码

    例题(LeetCode746)

    数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 costi

    每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。

    您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。

    示例 1:

    输入: cost = [10, 15, 20]
    输出: 15
    解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
    

    示例 2:

    输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
    输出: 6
    解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
    

    注意:

    cost 的长度将会在 [2, 1000]。
    每一个 cost[i] 将会是一个Integer类型,范围为 [0, 999]。

    解法

    上升到某级(i)有两种方法,从i-1级上一步,从i-2级上两步,那么就可以知道状态转移方程了
    dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i],顺着这个思路从3开始,最后再输出一下就行。

    代码:

      public int minCostClimbingStairs(int[] cost) {
        int len = cost.length;
        int dp[] = new int[len + 1];
    
        dp[0] = cost[0];
        dp[1] = cost[1];
        for (int i = 2; i < len; i++) {
          dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];
        }
        return Math.min(dp[len - 1], dp[len - 2]);
      }
    
  • 相关阅读:
    HDU 1251 统计难题(字典树模板题)
    POJ 1182 食物链(带权并查集)
    FJUT 2351 T^T的图论(并查集)
    10.QT程序框架与connect
    9.正则表达式
    8.QList QMap QVariant
    7.treeview
    6.图形化列表查询显示
    5.listview(QStringList QStringListModel)
    4.QList
  • 原文地址:https://www.cnblogs.com/blogxjc/p/12372894.html
Copyright © 2020-2023  润新知