一、回溯算法主要思想
回溯法有“通用的解题法”之称。用它可以系统地搜索一个问题的所有解或任一解。回溯法是一个既带有系统性又带有跳跃性的搜索算法,它在问题的解空间树中,按深度优先策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一结点时,先判断该结点是否包含问题的解。如果不包含,则跳过对以该结点为根的子树的搜索,逐层向其祖先结点回溯。否则进入该子树,继续按深度优先策略搜索。回溯算法求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。回溯法求问题的一个解时,只要搜索到问题的一个解就可结束。这种以深度优先方式系统搜索问题解的算法称为回溯算法,它适用于解组合较大的问题。
确定了解空间的组织结构后,回溯法从开始结点(根结点)出发,以深度优先方式搜索整个解空间。这个开始结点成为活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已无活结点时为止。
二、用回溯法解题通常包括以下 3 个步骤
(1)针对所给问题,定义问题的解空间;
(2)确定易于搜索的解空间结构;
(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。
三、通用的子集树和排列树算法模型
(1)子集树【时间复杂度 O(2n) 】
void backtrack(int t) { if (t > n) { Output(x); } else { for (int i = 0; i <= 1; i++) { x[t] = i; if (constraint(t) && bound(t)) { // 剪枝函数 backtrack(t + 1); } } } }
(2)排列树【时间复杂度 O(n!) 】
void backtrack(int t) { if (t > n) { Output(x); } else { for (int i = t; i <= n; i++) { swap(x[t], x[i]); if (constraint(t) && bound(t)) { // 剪枝函数 backtrack(t + 1); } swap(x[t], x[i]); } } }
四、总结
回溯法核心:找出解决问题的组织结构,是采用子集树解决,还是采用排列树解决;
回溯法重点:根据问题,找出剪枝函数,避免无效的搜索,导致性能降低;
回溯法缺点:比较慢,递归求解,排列树思想要搜索出所有的解,类似于暴力求解,时间复杂度高。