• Linux学习 :按键信号 之 异步通知


    一、异步通知概念:

      异步通知是指:一旦设备就绪,则主动通知应用程序,应用程序根本就不需要查询设备状态,类似于中断的概念,一个进程收到一个信号与处理器收到一个中断请求可以说是一样的。信号是异步的,一个进程不必通过任何操作来等待信号的到达。下面我们就看一下在linux中机制的实现方式。

      在linux中,异步通知是使用信号来实现的,而在linux,大概有30种信号,比如大家熟悉的ctrl+c的SIGINT信号,进程能够忽略或者捕获除过SIGSTOP和SIGKILL的全部信号,当信号背捕获以后,有相应的signal()函数来捕获信号,函数原型:sighandler_t signal(int signum, sighandler_t handler); 第 一个参数就是指定的信号的值,而第二个参数便是此信号的信号处理函数,当为SIG_IGN,表示信号被忽略,当为SIG_DFL时,表示采用系统的默认方 式来处理该信号。当然,信号处理函数也可以自己定义。当signal()调用成功后,返回处理函数handler值,调用失败后返回SIG_ERR。

    二、信号处理要点:

    ①、注册信号处理函数:应用注册
    ②、发送者:驱动drv
    ③、接受者:应用app
    ④、发送方法:kill_fasync (&button_async, SIGIO, POLL_IN);

    三、 原子操作:执行过程中不会被别的代码路径所中断的操作

    常用原子操作函数:
    atomic_t v = ATOMIC_INIT(0); //定义原子变量v并初始化为0
    atomic_read(atomic_t *v);       //返回原子变量的值
    void atomic_inc(atomic_t *v);  //原子变量增加1
    void atomic_dec(atomic_t *v);  //原子变量减少1
    int atomic_dec_and_test(atomic_t *v);  //自减操作后测试结果,0返回真,否则返回假 

    四、信号量
    1.定义:struct semaphore sem:
    2.初始化:void sema_init(struct semaphore *sem, int val);
         void init_MUTEX(stuct semaphore *sem); //初始化为0
         static DECLARE_MUTEX(button_lock); //定义互斥锁

    3.获得信号量: void down(struct semaphore *sem);
             int down_interruptible(struct semaphore *sem);
           int down_trylock(struct semaphore *sem);
    4.释放信号量:

           void up(struct semaphore *sem);

    五、阻塞:执行设备操作时若不能获得资源,则挂起进入休眠状态,被从调度器的运行队列移走,直到条件满足。

      非阻塞:执行设备操作时若不能获得资源,释放或查询等待条件满足。 : fd = open("/dev/buttons", O_RDWR | O_NONBLOCK);



    六、示例代码:
    1.驱动代码: signal_drv.c ========================================

    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/fs.h>
    #include <linux/init.h>
    #include <linux/delay.h>
    #include <linux/irq.h>
    #include <asm/uaccess.h>
    #include <asm/irq.h>
    #include <asm/io.h>
    #include <asm/arch/regs-gpio.h>
    #include <asm/hardware.h>
    #include <linux/poll.h>


    static struct class *signaldrv_class;
    static struct class_device *signaldrv_class_dev;

    volatile unsigned long *gpfcon;
    volatile unsigned long *gpfdat;

    volatile unsigned long *gpgcon;
    volatile unsigned long *gpgdat;


    static DECLARE_WAIT_QUEUE_HEAD(button_waitq);

    /* 中断事件标志, 中断服务程序将它置1,signal_drv_read将它清0 */
    static volatile int ev_press = 0;

    static struct fasync_struct *button_async;


    struct pin_desc{
    unsigned int pin;
    unsigned int key_val;
    };


    /* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */
    /* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */
    static unsigned char key_val;

    struct pin_desc pins_desc[4] = {
    {S3C2410_GPF0, 0x01},
    {S3C2410_GPF2, 0x02},
    {S3C2410_GPG3, 0x03},
    {S3C2410_GPG11, 0x04},
    };

    //static atomic_t canopen = ATOMIC_INIT(1); //定义原子变量并初始化为1

    static DECLARE_MUTEX(button_lock); //定义互斥锁

    /*
    * 确定按键值
    */
    static irqreturn_t buttons_irq(int irq, void *dev_id)
    {
    struct pin_desc * pindesc = (struct pin_desc *)dev_id;
    unsigned int pinval;

    pinval = s3c2410_gpio_getpin(pindesc->pin);

    if (pinval)
    {
    /* 松开 */
    key_val = 0x80 | pindesc->key_val;
    }
    else
    {
    /* 按下 */
    key_val = pindesc->key_val;
    }

    ev_press = 1; /* 表示中断发生了 */
    wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */

    kill_fasync (&button_async, SIGIO, POLL_IN);

    return IRQ_RETVAL(IRQ_HANDLED);
    }

    static int signal_drv_open(struct inode *inode, struct file *file)
    {
    #if 0
    if (!atomic_dec_and_test(&canopen))
    {
    atomic_inc(&canopen);
    return -EBUSY;
    }
    #endif

    if (file->f_flags & O_NONBLOCK)
    {
    if (down_trylock(&button_lock))
    return -EBUSY;
    }
    else
    {
    /* 获取信号量 */
    down(&button_lock);
    }

    /* 配置GPF0,2为输入引脚 */
    /* 配置GPG3,11为输入引脚 */
    request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[0]);
    request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[1]);
    request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[2]);
    request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S5", &pins_desc[3]);

    return 0;
    }

    ssize_t signal_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
    {
    if (size != 1)
    return -EINVAL;

    if (file->f_flags & O_NONBLOCK)
    {
    if (!ev_press)
    return -EAGAIN;
    }
    else
    {
    /* 如果没有按键动作, 休眠 */
    wait_event_interruptible(button_waitq, ev_press);
    }

    /* 如果有按键动作, 返回键值 */
    copy_to_user(buf, &key_val, 1);
    ev_press = 0;

    return 1;
    }


    int signal_drv_close(struct inode *inode, struct file *file)
    {
    //atomic_inc(&canopen);
    free_irq(IRQ_EINT0, &pins_desc[0]);
    free_irq(IRQ_EINT2, &pins_desc[1]);
    free_irq(IRQ_EINT11, &pins_desc[2]);
    free_irq(IRQ_EINT19, &pins_desc[3]);
    up(&button_lock);
    return 0;
    }

    static unsigned signal_drv_poll(struct file *file, poll_table *wait)
    {
    unsigned int mask = 0;
    poll_wait(file, &button_waitq, wait); // 不会立即休眠

    if (ev_press)
    mask |= POLLIN | POLLRDNORM;

    return mask;
    }

    static int signal_drv_fasync (int fd, struct file *filp, int on)
    {
    printk("driver: signal_drv_fasync ");
    return fasync_helper (fd, filp, on, &button_async);
    }


    static struct file_operations sencod_drv_fops = {
    .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
    .open = signal_drv_open,
    .read = signal_drv_read,
    .release = signal_drv_close,
    .poll = signal_drv_poll,
    .fasync = signal_drv_fasync,
    };


    int major;
    static int signal_drv_init(void)
    {
    major = register_chrdev(0, "signal_drv", &sencod_drv_fops);

    signaldrv_class = class_create(THIS_MODULE, "signal_drv");

    signaldrv_class_dev = class_device_create(signaldrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */

    gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16);
    gpfdat = gpfcon + 1;

    gpgcon = (volatile unsigned long *)ioremap(0x56000060, 16);
    gpgdat = gpgcon + 1;

    return 0;
    }

    static void signal_drv_exit(void)
    {
    unregister_chrdev(major, "signal_drv");
    class_device_unregister(signaldrv_class_dev);
    class_destroy(signaldrv_class);
    iounmap(gpfcon);
    iounmap(gpgcon);
    return 0;
    }


    module_init(signal_drv_init);

    module_exit(signal_drv_exit);

    MODULE_LICENSE("GPL");

    2.测试代码:signaltest.c =============================================


    #include <sys/types.h>
    #include <sys/stat.h>
    #include <fcntl.h>
    #include <stdio.h>
    #include <poll.h>
    #include <signal.h>
    #include <sys/types.h>
    #include <unistd.h>
    #include <fcntl.h>


    /* sixthdrvtest
    */
    int fd;

    void my_signal_fun(int signum)
    {
    unsigned char key_val;
    read(fd, &key_val, 1);
    printf("key_val: 0x%x ", key_val);
    }

    int main(int argc, char **argv)
    {
    unsigned char key_val;
    int ret;
    int Oflags;

    //signal(SIGIO, my_signal_fun);

    fd = open("/dev/buttons", O_RDWR | O_NONBLOCK);
    if (fd < 0)
    {
    printf("can't open! ");
    return -1;
    }

    //fcntl(fd, F_SETOWN, getpid());

    //Oflags = fcntl(fd, F_GETFL);

    //fcntl(fd, F_SETFL, Oflags | FASYNC);


    while (1)
    {
    ret = read(fd, &key_val, 1);
    printf("key_val: 0x%x, ret = %d ", key_val, ret);
    sleep(5);
    }

    return 0;
    }

    3.Makefile: ================================

    KERN_DIR = /work/system/linux-2.6.22.6

    all:
    make -C $(KERN_DIR) M=`pwd` modules

    clean:
    make -C $(KERN_DIR) M=`pwd` modules clean
    rm -rf modules.order

    obj-m += signal_drv.o

    rm -rf modules.order

    obj-m+= signal_drv.o

  • 相关阅读:
    Linux权限对文件或者目录的影响
    Linux基础命令chmod(什么是权限?如何设置权限)
    Shell编程——素数的判断
    Shell编程——阶乘
    Shell编程——回文数
    汇编(8253计数器)
    汇编(8255A的工作方式1)
    汇编(8255A的方式0)
    汇编(程序查询方式控制输入输出)
    Shell函数、接受用户输入
  • 原文地址:https://www.cnblogs.com/blogs-of-lxl/p/5879008.html
Copyright © 2020-2023  润新知