• Linux学习 : 裸板调试 之 配置UART


    1、UART原理说明

    发送数据时,CPU将并行数据写入UART,UART按照一定的格式在一根电线上串行发出;接收数据时,UART检测另一根电线上的信号,串行收集然后放在缓冲区中,CPU即可读取UART获得这些数据。UART之间以全双工方式传输数据,最精确的连线方法只有3根电线:TxD用于发送数据,RxD用于接收数据,Gnd用于给双发提供参考电平,连线如下:
    UART基础知识 - 小白 - 小白的博客
    UART使用标准的TTL/CMOS逻辑电平(0~5v、0~3.3v、0~2.5v或0~1.8v)来表示数据,高电平表示1,低电平表示0。为了增强数据的抗干扰能力、提高传输长度,通常将TTL/CMOD逻辑电平转换为RS-232逻辑电平,3~12v表示0,-3~-12v表示1.
     
    2、实验平台: s3c2440:
     
    寄存器定义:s3c24xx.h
    /* WOTCH DOG register */
    #define     WTCON           (*(volatile unsigned long *)0x53000000)
    
    /* SDRAM regisers */
    #define     MEM_CTL_BASE    0x48000000
    #define     SDRAM_BASE      0x30000000
    
    /* NAND Flash registers */
    #define NFCONF              (*(volatile unsigned int  *)0x4e000000)
    #define NFCMD               (*(volatile unsigned char *)0x4e000004)
    #define NFADDR              (*(volatile unsigned char *)0x4e000008)
    #define NFDATA              (*(volatile unsigned char *)0x4e00000c)
    #define NFSTAT              (*(volatile unsigned char *)0x4e000010)
    
    /*GPIO registers*/
    #define GPBCON              (*(volatile unsigned long *)0x56000010)
    #define GPBDAT              (*(volatile unsigned long *)0x56000014)
    
    #define GPFCON              (*(volatile unsigned long *)0x56000050)
    #define GPFDAT              (*(volatile unsigned long *)0x56000054)
    #define GPFUP               (*(volatile unsigned long *)0x56000058)
    
    #define GPGCON              (*(volatile unsigned long *)0x56000060)
    #define GPGDAT              (*(volatile unsigned long *)0x56000064)
    #define GPGUP               (*(volatile unsigned long *)0x56000068)
    
    #define GPHCON              (*(volatile unsigned long *)0x56000070)
    #define GPHDAT              (*(volatile unsigned long *)0x56000074)
    #define GPHUP               (*(volatile unsigned long *)0x56000078)
    
    
    
    /*UART registers*/
    #define ULCON0              (*(volatile unsigned long *)0x50000000)
    #define UCON0               (*(volatile unsigned long *)0x50000004)
    #define UFCON0              (*(volatile unsigned long *)0x50000008)
    #define UMCON0              (*(volatile unsigned long *)0x5000000c)
    #define UTRSTAT0            (*(volatile unsigned long *)0x50000010)
    #define UTXH0               (*(volatile unsigned char *)0x50000020)
    #define URXH0               (*(volatile unsigned char *)0x50000024)
    #define UBRDIV0             (*(volatile unsigned long *)0x50000028)
    
    
    /*interrupt registes*/
    #define SRCPND              (*(volatile unsigned long *)0x4A000000)
    #define INTMOD              (*(volatile unsigned long *)0x4A000004)
    #define INTMSK              (*(volatile unsigned long *)0x4A000008)
    #define PRIORITY            (*(volatile unsigned long *)0x4A00000c)
    #define INTPND              (*(volatile unsigned long *)0x4A000010)
    #define INTOFFSET           (*(volatile unsigned long *)0x4A000014)
    #define SUBSRCPND           (*(volatile unsigned long *)0x4A000018)
    #define INTSUBMSK           (*(volatile unsigned long *)0x4A00001c)
    
    /*external interrupt registers*/
    #define EINTMASK            (*(volatile unsigned long *)0x560000a4)
    #define EINTPEND            (*(volatile unsigned long *)0x560000a8)
    
    /*clock registers*/
    #define    LOCKTIME        (*(volatile unsigned long *)0x4c000000)
    #define    MPLLCON        (*(volatile unsigned long *)0x4c000004)
    #define    UPLLCON        (*(volatile unsigned long *)0x4c000008)
    #define    CLKCON        (*(volatile unsigned long *)0x4c00000c)
    #define    CLKSLOW        (*(volatile unsigned long *)0x4c000010)
    #define    CLKDIVN        (*(volatile unsigned long *)0x4c000014)
    
    
    /*PWM & Timer registers*/
    #define    TCFG0        (*(volatile unsigned long *)0x51000000)
    #define    TCFG1        (*(volatile unsigned long *)0x51000004)
    #define    TCON        (*(volatile unsigned long *)0x51000008)
    #define    TCNTB0        (*(volatile unsigned long *)0x5100000c)
    #define    TCMPB0        (*(volatile unsigned long *)0x51000010)
    #define    TCNTO0        (*(volatile unsigned long *)0x51000014)
    
    #define GSTATUS1    (*(volatile unsigned long *)0x560000B0)

    uart使用函数声明:serial.h

    void uart0_init(void);
    void putc(unsigned char c);
    unsigned char getc(void);
    int isDigit(unsigned char c);
    int isLetter(unsigned char c);

    uart使用函数实现:serial.c

    #include "s3c24xx.h"
    #include "serial.h"
    
    #define TXD0READY   (1<<2)
    #define RXD0READY   (1)
    
    #define PCLK            50000000    // init.c中的clock_init函数设置PCLK为50MHz
    #define UART_CLK        PCLK        //  UART0的时钟源设为PCLK
    #define UART_BAUD_RATE  115200      // 波特率
    #define UART_BRD        ((UART_CLK  / (UART_BAUD_RATE * 16)) - 1)
    
    /*
     * 初始化UART0
     * 115200,8N1,无流控
     */
    void uart0_init(void)
    {
        GPHCON  |= 0xa0;    // GPH2,GPH3用作TXD0,RXD0
        GPHUP   = 0x0c;     // GPH2,GPH3内部上拉
    
        ULCON0  = 0x03;     // 8N1(8个数据位,无较验,1个停止位)
        UCON0   = 0x05;     // 查询方式,UART时钟源为PCLK
        UFCON0  = 0x00;     // 不使用FIFO
        UMCON0  = 0x00;     // 不使用流控
        UBRDIV0 = UART_BRD; // 波特率为115200
    }
    
    /*
     * 发送一个字符
     */
    void putc(unsigned char c)
    {
        /* 等待,直到发送缓冲区中的数据已经全部发送出去 */
        while (!(UTRSTAT0 & TXD0READY));
        
        /* 向UTXH0寄存器中写入数据,UART即自动将它发送出去 */
        UTXH0 = c;
    }
    
    /*
     * 接收字符
     */
    unsigned char getc(void)
    {
        /* 等待,直到接收缓冲区中的有数据 */
        while (!(UTRSTAT0 & RXD0READY));
        
        /* 直接读取URXH0寄存器,即可获得接收到的数据 */
        return URXH0;
    }
    
    /*
     * 判断一个字符是否数字
     */
    int isDigit(unsigned char c)
    {
        if (c >= '0' && c <= '9')
            return 1;
        else
            return 0;       
    }
    
    /*
     * 判断一个字符是否英文字母
     */
    int isLetter(unsigned char c)
    {
        if (c >= 'a' && c <= 'z')
            return 1;
        else if (c >= 'A' && c <= 'Z')
            return 1;       
        else
            return 0;
    }

    初始化函数:init.c

    /*
     * init.c: 进行一些初始化
     */ 
    
    #include "s3c24xx.h"
     
    void disable_watch_dog(void);
    void clock_init(void);
    void memsetup(void);
    void copy_steppingstone_to_sdram(void);
    
    /*
     * 关闭WATCHDOG,否则CPU会不断重启
     */
    void disable_watch_dog(void)
    {
        WTCON = 0;  // 关闭WATCHDOG很简单,往这个寄存器写0即可
    }
    
    #define S3C2410_MPLL_200MHZ     ((0x5c<<12)|(0x04<<4)|(0x00))
    #define S3C2440_MPLL_200MHZ     ((0x5c<<12)|(0x01<<4)|(0x02))
    /*
     * 对于MPLLCON寄存器,[19:12]为MDIV,[9:4]为PDIV,[1:0]为SDIV
     * 有如下计算公式:
     *  S3C2410: MPLL(FCLK) = (m * Fin)/(p * 2^s)
     *  S3C2440: MPLL(FCLK) = (2 * m * Fin)/(p * 2^s)
     *  其中: m = MDIV + 8, p = PDIV + 2, s = SDIV
     * 对于本开发板,Fin = 12MHz
     * 设置CLKDIVN,令分频比为:FCLK:HCLK:PCLK=1:2:4,
     * FCLK=200MHz,HCLK=100MHz,PCLK=50MHz
     */
    void clock_init(void)
    {
        // LOCKTIME = 0x00ffffff;   // 使用默认值即可
        CLKDIVN  = 0x03;            // FCLK:HCLK:PCLK=1:2:4, HDIVN=1,PDIVN=1
    
        /* 如果HDIVN非0,CPU的总线模式应该从“fast bus mode”变为“asynchronous bus mode” */
    __asm__(
        "mrc    p15, 0, r1, c1, c0, 0
    "        /* 读出控制寄存器 */ 
        "orr    r1, r1, #0xc0000000
    "          /* 设置为“asynchronous bus mode” */
        "mcr    p15, 0, r1, c1, c0, 0
    "        /* 写入控制寄存器 */
        );
    
        /* 判断是S3C2410还是S3C2440 */
        if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002))
        {
            MPLLCON = S3C2410_MPLL_200MHZ;  /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */
        }
        else
        {
            MPLLCON = S3C2440_MPLL_200MHZ;  /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */
        }       
    }
    
    /*
     * 设置存储控制器以使用SDRAM
     */
    void memsetup(void)
    {
        volatile unsigned long *p = (volatile unsigned long *)MEM_CTL_BASE;
    
        /* 这个函数之所以这样赋值,而不是像前面的实验(比如mmu实验)那样将配置值
         * 写在数组中,是因为要生成”位置无关的代码”,使得这个函数可以在被复制到
         * SDRAM之前就可以在steppingstone中运行
         */
        /* 存储控制器13个寄存器的值 */
        p[0] = 0x22011110;     //BWSCON
        p[1] = 0x00000700;     //BANKCON0
        p[2] = 0x00000700;     //BANKCON1
        p[3] = 0x00000700;     //BANKCON2
        p[4] = 0x00000700;     //BANKCON3  
        p[5] = 0x00000700;     //BANKCON4
        p[6] = 0x00000700;     //BANKCON5
        p[7] = 0x00018005;     //BANKCON6
        p[8] = 0x00018005;     //BANKCON7
        
        /* REFRESH,
         * HCLK=12MHz:  0x008C07A3,
         * HCLK=100MHz: 0x008C04F4
         */ 
        p[9]  = 0x008C04F4;
        p[10] = 0x000000B1;     //BANKSIZE
        p[11] = 0x00000030;     //MRSRB6
        p[12] = 0x00000030;     //MRSRB7
    }
    
    void copy_steppingstone_to_sdram(void)
    {
        unsigned int *pdwSrc  = (unsigned int *)0;
        unsigned int *pdwDest = (unsigned int *)0x30000000;
        
        while (pdwSrc < (unsigned int *)4096)
        {
            *pdwDest = *pdwSrc;
            pdwDest++;
            pdwSrc++;
        }
    }

    测试uart代码:main.c

    #include "serial.h"
    
    int main()
    {
        unsigned char c;
        uart0_init();   // 波特率115200,8N1(8个数据位,无校验位,1个停止位)
    
        while(1)
        {
            // 从串口接收数据后,判断其是否数字或子母,若是则加1后输出
            c = getc();
            if (isDigit(c) || isLetter(c))
                putc(c+1);
        }
    
        return 0;
    }

    汇编调用代码:head.S 

    位置无关码使用条件: 1、使用b , bl 指令

               2、C语言不使用全局变量或静态变量

    @******************************************************************************
    @ File:head.S
    @ 功能:设置SDRAM,将程序复制到SDRAM,然后跳到SDRAM继续执行
    @******************************************************************************       
       
    .extern     main
    .text 
    .global _start 
    _start:
    Reset:                  
        ldr sp, =4096           @ 设置栈指针,以下都是C函数,调用前需要设好栈
        bl  disable_watch_dog   @ 关闭WATCHDOG,否则CPU会不断重启
                                @ bl是位置无关码,相当于:PCnew = PC + 偏移
                                @                      PCnew = (4+8) + 0x28 = 0x34
        
        ldr pc, =disable_watch_dog
        
        bl  clock_init          @ 设置MPLL,改变FCLK、HCLK、PCLK
        bl  memsetup            @ 设置存储控制器以使用SDRAM
        bl  copy_steppingstone_to_sdram     @ 复制代码到SDRAM中
        ldr pc, =on_sdram                   @ 跳到SDRAM中继续执行
    on_sdram:
        ldr sp, =0x34000000     @ 设置栈指针,SDRAM 64M
        ldr lr, =halt_loop      @ 设置返回地址
        ldr pc, =main           @ 调用main函数
    halt_loop:
        b   halt_loop

    编译链接脚本:从SDRAM执行

    SECTIONS {
        . = 0x30000000;
        .text          :   { *(.text) }
        .rodata ALIGN(4) : {*(.rodata)} 
        .data ALIGN(4) : { *(.data) }
        .bss ALIGN(4)  : { *(.bss)  *(COMMON) }
    }

    Makefile:

    objs := head.o init.o serial.o main.o
    
    uart.bin: $(objs)
        arm-linux-ld -Tuart.lds -o uart_elf $^
        arm-linux-objcopy -O binary -S uart_elf $@
        arm-linux-objdump -D -m arm uart_elf > uart.dis
        
    %.o:%.c
        arm-linux-gcc -Wall -O2 -c -o $@ $<
    
    %.o:%.S
        arm-linux-gcc -Wall -O2 -c -o $@ $<
    
    clean:
        rm -f uart.bin uart_elf uart.dis *.o        
        
  • 相关阅读:
    redis学习
    win2008下c#调用directshow问题
    vs2005升级到vs2010相关问题
    spark-shell 启动失败,显示端口问题
    监控spark-sql 等脚本
    spark 相关配置 shuffle 相关配置选项
    spark on Yarn 语句
    使用hive thriftserver 连接spark sql
    HBase 报错系列之region is not online
    HBase 表迁移中对丢失的表检查使用的语句
  • 原文地址:https://www.cnblogs.com/blogs-of-lxl/p/5839845.html
Copyright © 2020-2023  润新知