• 常微分方程图解


    %我的 tex 模版
    documentclass[UTF8,a1paper,landscape]{ctexart}%UTF8 中文支持,a1paper 纸张大小,landscape 横向版面,ctexart 中文文章
    usepackage{tikz}%图包
    usetikzlibrary{trees}%树包
    
    usepackage{amsmath}
    
    usepackage{geometry}%页边距设置
    geometry{top=5cm,bottom=5cm,left=5cm,right=5cm}
    
    usepackage{fancyhdr}%页头页尾页码设置
    pagestyle{fancy}
    egin{document}
        	itle{常微分方程图解}
        author{dengchaohai}
        maketitle
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        
    ewpage%另起一页
        part{一阶常微分方程}
        section*{一阶常微分方程逻辑关系图解}
        egin{center}%居中
            egin{tikzpicture}
            [
            grow=right,
            r/.style={rectangle,draw,fill=red!20,align=center,rounded corners=.8ex},
            g/.style={rectangle,draw,fill=green!20,align=center,rounded corners=.8ex},
            b/.style={rectangle,draw,fill=blue!20,align=center,rounded corners=.8ex},
            grow via three points={one child at (4,-4) and two children at (4,-4) and (4,-8)},
            edge from parent path={(	ikzparentnode.south)|-(	ikzchildnode.west)},
            ]%属性定义
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
            
    ode(-1)at(0,12)[r]{解的存在唯一性\$/x-x_0/leq h$}
            child{node(g)[g]{解的延拓}}
            child{node(h)[g]{解对初值的连续可微性}}
            child[missing]{}
            child[missing]{}
            child[missing]{}
            child[missing]{};
            
    ode(-2)at(10,8)[b]{解的存在空间(局部)\$|x-x_0|leq h$};
            
    ode(-3)at(15,8)[b]{通解\$y=y(c,x)$};
            
    ode(-4)at(20,8)[b]{定解\$y=y(x_0,y_0,x)$};
            
    ode(-5)at(25,8)[b]{解的存在空间(饱和)\$(c,d)$};
            
    ode(-6)at(15,0)[b]{包络};
            
    ode(-7)at(20,4)[b]{解对初值的连续可微性\$y=y(x_0,y_0,x,lambda)$};    
            
    ode(-8)at(40,0)[b]{奇解}
            child{node[b]{$c-$判别曲线\$Phi(c,x,y)=0,Phi'_c=0$}}
            child{node[b]{$p-$判别曲线\$F(x,y,p)=0,F'_p=0$}};
            
            draw[->](-2)--(-3);
            draw[->](-3)--(-6);
            draw[->](-4)--(-7);
            draw[->](-3)to node[above]{初值$(x_0,y_0)$}(-4);
            draw[->](-4)--(-5);        
            draw[->](-2)--(10,9)to node[above]{延拓}(25,9)--(-5);
            draw[->](-6)--(-8);
            
            
    ode(0)at(0,0)[r]{一阶常微分方程\$F(x,y,y')=0$}
            child{node[g]{显式\$y'=f(x,y)$}
                child{node(a)[b]{3分式微分方程\$frac{dy}{dx}=frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}$}}
                child{node(b)[b]{7伯努利微分方程\$frac{dy}{dx}=P(x)y+Q(x)y^n$}}}        
            child[missing]{}
            child[missing]{}
            child{node[g]{隐式\$F(x,y,y')=0$}
                child{node(c)[b]{8显解$x$\$x=f(y,y')$}}
                child{node(d)[b]{9显解$y$\$y=f(x,y')$}}
                child{node(e)[b]{10不含$x$\$F(y,y')=0$}}
                child{node(f)[b]{11不含$y$\$F(x,y')=0$}}};
            
            
            
    ode(1)at(15,-8)[b]{2齐次微分方程\$frac{dy}{dx}=f(frac{y}{x})$};
            
    ode(2)at(20,-8)[b]{1变量分离方程\$frac{dy}{dx}=psi(x)varphi(y)$};
            
    ode(3)at(25,-8)[b]{4恰当微分方程\$M(x,y)dx+N(x,y)dy=0$};
            
    ode(4)at(15,-12)[b]{6非齐次线性微分方程\$frac{dy}{dx}=P(x)y+Q(x)$};
            
    ode(5)at(20,-12)[b]{5齐次线性微分方程\$frac{dy}{dx}=P(x)y$};
            
            
            draw[->](a)--(1);
            draw[->](1)--(2);
            draw[->](2)--(3);
            draw[->](b)--(4);
            draw[->](4)--(5);
            draw[->](5)--(2);
            draw(-1)--(0);
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
            end{tikzpicture}
        end{center}
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
        
    ewpage
        section*{一阶常微分方程图解对应解法}
        egin{itemize}
            item 1.
            [
            egin{split}
            given:quadfrac{dy}{dx}=psi(x)varphi(y).\
            ifquadvarphi(y)=0\
            &Rightarrow varphi(y)=0\
            &Rightarrow y=y_0\
            ifquadvarphi(y)
    e0\
            &Rightarrow frac{1}{varphi(y)}dy=psi(x)dx\
            &Rightarrow intfrac{1}{varphi(y)}dy=intpsi(x)dx+c\
            &Rightarrow Phi(c,x,y)=0\
            &Rightarrow y=y(c,x)\
            end{split}         
            ]
            item 2.
            [
            egin{split}
            given:quadfrac{dy}{dx}=f(frac{y}{x}).\
            letquad u=frac{y}{x}
            &Rightarrow y=ux\
            &Rightarrow frac{dy}{dx}=frac{du}{dx}x+u\
            &Rightarrow frac{du}{dx}x+u=f(u)\
            &Rightarrow frac{du}{dx}=frac{f(u)-u}{x}\
            &Rightarrow frac{du}{dx}=psi(u)varphi(x)\
            end{split}    
            ]
            item 3.
            [
            egin{split}
            given:quadfrac{dy}{dx}=frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}.\
            ifquad c_1=c_2=0\
            &Rightarrow frac{dy}{dx}=frac{a_1+b_1frac{y}{x}}{a_2+b_2frac{y}{x}}\
            &Rightarrow frac{dy}{dx}=f(frac{y}{x})\
            letquad u=frac{y}{x}\
            &Rightarrow frac{dy}{dx}=psi(u)\
            ifquad frac{a_1}{a_2}=frac{b_1}{b_2}=frac{c_1}{c_2}=k\        
            &Rightarrow frac{dy}{dx}=k\
            ifquad frac{a_1}{a_2}=frac{b_1}{b_2}=k
    efrac{c_1}{c_2}\
            letquad u=a_1x+b_1y\
            &Rightarrow frac{du}{dx}=a_1+b_1frac{dy}{dx}=a_1+b_1frac{ku+c_1}{u+c_2}\
            &Rightarrow frac{du}{dx}=psi(u)\
            ifquad frac{a_1}{a_2}
    efrac{b_1}{b_2}\
            &Rightarrow a_1x+b_1y+c_1=0,a_2x+b_2y+c_2=0\
            &Rightarrow x=x_0,y=y_0\
            letquad x=X+x_0,y=Y+y_0\
            &Rightarrow frac{dy}{dx}=frac{dY}{dX}=frac{a_1X+b_1Y}{a_2X+b_2X}=frac{a_1+b_1frac{Y}{X}}{a_2+b_2frac{Y}{X}}\
            letquad u=frac{Y}{X}\
            &Rightarrow frac{du}{dX}=psi(u)varphi(X)\        
            end{split}    
            ]
            item 4.
            [
            egin{split}
            given:quad M(x,y)dx+N(x,y)dy=0.\
            ifquad frac{frac{partial M}{partial y}-frac{partial N}{partial x}}{-M}=varphi(y)\
            &Rightarrow mu=e^{intvarphi(y)dy}\
            ifquad frac{frac{partial M}{partial y}-frac{partial N}{partial x}}{N}=psi(x)\
            &Rightarrow mu=e^{intvarphi(x)dx}\
            letquad mu Mdx+mu Ndy=0\
            &Rightarrow u=intmu Mdx+varphi(y)\
            &Rightarrow frac{du}{dy}=mu N\
            &Rightarrow varphi(y)\
            &Rightarrow u=Phi(x,y)\
            &Rightarrow Phi(x,y)=c\
            end{split}    
            ]
            item 5.
            [
            egin{split}
            given:quadfrac{dy}{dx}=P(x)y.\
            &Rightarrow y=ce^{int P(x)dx}\
            end{split}    
            ]
            item 6.
            [
            egin{split}
            given:quadfrac{dy}{dx}=P(x)y+Q(x).\
            &Rightarrow y=e^{int P(x)dx}(int Q(x)e^{-int P(x)dx}dx+c)\
            end{split}    
            ]
            item 7.
            [
            egin{split}
            given:quadfrac{dy}{dx}=P(x)y+Q(x)y^n.\
            y^{-n}\
            &Rightarrow y^{-n}frac{dy}{dx}=y^{-n}P(x)y+y^{-n}Q(x)y^n\
            &Rightarrow y^{-n}frac{dy}{dx}=P(x)y^{1-n}+Q(x)\
            letquad z=y^{1-n}\
            &Rightarrow frac{dz}{dx}=(1-n)y^{-n}frac{dy}{dx}\
            &Rightarrow frac{dz}{dx}=(1-n)P(x)z+(1-n)Q(x)\
            &Rightarrow frac{dz}{dx}=psi (x)z+varphi(x)\
            end{split}    
            ]
            item 8.
            item 9.
            [
            egin{split}
            given:quad y=f(x,y').\
            letquad p=y'\
            &Rightarrow y=f(x,p)\
            &Rightarrow frac{dy}{dx}=frac{partial f}{partial x}+frac{partial f}{partial p}frac{dp}{dx}\
            &Rightarrow p=varphi(c,x)\
            &Rightarrow x=psi(c,p)\
            &Rightarrow y=f(psi(c,p),p)\
            end{split}
            ]
            item 10.
            item 11.
            [
            egin{split}
            given:quad F(x,y')=0.\
            letquad p=y'=p(t,x)\
            &Rightarrow x=psi(t)\
            &Rightarrow p=varphi(t)\
            &Rightarrow dy=pdx=varphi(t)psi'(t)dt\
            &Rightarrow y=intvarphi(t)psi'(t)dt+c\        
            end{split}
            ]
        end{itemize}
        
        
    ewpage
        part{高阶常微分方程}
        section*{高阶常微分方程逻辑关系图解}
        egin{center}%居中
            egin{tikzpicture}
            [
            grow=right,
            r/.style={rectangle,draw,fill=red!20,align=center,rounded corners=.8ex},
            g/.style={rectangle,draw,fill=green!20,align=center,rounded corners=.8ex},
            b/.style={rectangle,draw,fill=blue!20,align=center,rounded corners=.8ex},
            grow via three points={one child at (4,-2) and two children at (4,-2) and (4,-4)},
            edge from parent path={(	ikzparentnode.south)|-(	ikzchildnode.west)},
            ]%属性定义
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
            
    ode(0)at(0,0)[r]{高阶常微分方程}
            child[missing]{}
            child[missing]{}
            child{node(a)[g]{齐次微分方程}
                child{node[b]{常系数线性齐次微分方程}
                    child{node[b]{特征根法求通解}
                        child{node[b]{单根}
                            child{node[b]{实单根\$e^{lambda_1t}$}}
                            child{node[b]{$e^{lambda t}=e^{alpha t}(cos(eta t)+sin(eta t))$\复单根\(复$=2$,单$=1Rightarrow 2	imes1$的矩阵)\$e^{lambda_1t}$\$e^{overline{lambda_1}t}$}}}
                        child[missing]{}
                        child[missing]{}
                        child{node[b]{重根}
                            child{node[b]{实$k$重根\$underbrace{e^{lambda_1t},te^{lambda_1t},dots,t^{k-1}e^{lambda_1t}}_k$}}
                            child[missing]{}
                            child{node[b]{$e^{lambda t}=e^{alpha t}(cos(eta t)+sin(eta t))$\复$k$重根\(复$=2$,单$=kRightarrow 2	imes k$的矩阵)\$underbrace{e^{lambda_1t},te^{lambda_1t},dots,t^{k-1}e^{lambda_1t}}_k$\$underbrace{e^{overline{lambda_1}t},te^{overline{lambda_1}t},dots,t^{k-1}e^{overline{lambda_1}t}}_k$}}}}}}
            child[missing]{}
            child[missing]{}
            child[missing]{}
            child[missing]{}
            child[missing]{}
            child[missing]{}
            child[missing]{}
            child[missing]{}
            child[missing]{}
            child[missing]{}
            child{node(b)[g]{非齐次微分方程}            
                child{node[b]{常系数非线性齐次微分方程}
                    child{node[b]{待定系数法求特解}
                        child{node[b]{$f(t)=(b_0t^m+b_1t^{m-1}+dots+b_m)e^{lambda t}$}
                            child{node[b]{$k$是特征值$lambda$的重数,若$lambda$不是特征值,那么$k=0$\~{x}$=t^k((b_0t^m+b_1t^{m-1}+dots+b_m)e^{lambda t})$}}}
                        child[missing]{}
                        child[missing]{}
                        child{node[b]{$f(t)=((P(t)cos(eta t)+Q(t)sin(eta t))e^{alpha t}$}
                            child{node[b]{$e^{lambda t}=e^{alpha t}(cos(eta t)+sin(eta t))$\$k$是特征值$lambda$的重数,若$lambda$不是特征值,那么$k=0$\~{x}$=t^k(((P(t)cos(eta t)+Q(t)sin(eta t))e^{alpha t})$}}}}}};
            
            
    ode(1)at(4,0)[g]{降阶法\$x=x(t)$}
            child{node[b]{不显含$x$,降$k$阶\$F(t,x^{(k)},x^{(k+1)},dots,x^{(n)})=0$}}
            child{node[b]{不显含$t$,降$1$阶\$F(x,x',x'',dots,x^{(n)})=0$}};
            draw[->](0)--(1);    
            draw[->,green](a)to node[right]{常数变易法$cRightarrow c(x)$}(b);        
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
            end{tikzpicture}
        end{center}
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        
    ewpage
        section*{高阶常微分方程图解对应解法}
        egin{itemize}
            item 1.降$1$阶
            [
            egin{split}
            givenquad F(x,x',x'',dots,x^{(n)})=0.\
            letquad y=x'\
            &Rightarrow x''=frac{dy}{dt}=frac{dy}{dx}frac{dx}{dt}=y'frac{dy}{dx}\
            &Rightarrow F(x,y,y'frac{dy}{dx},dots,cdotsfrac{dy}{dx})=0\
            &Rightarrow y=y(t,c_1,c_2,dots,c_{n-1})\
            &Rightarrow int ydx=int x'dx\
            &Rightarrow x\            
            end{split}
            ]
            item 2.降$k$阶
            [
            egin{split}
            givenquad F(t,x^{(k)},x^{(k+1)},dots,x^{(n)})=0.\
            letquad y=x^{(k)}\
            &Rightarrow F(t,y,y',dots,y^{(n-k)})=0\
            &Rightarrow y=y(t,c_1,c_2,dots,c_{n-k})\
            &Rightarrow int ydx=int x^{(k)}dx\
            &Rightarrow x=underbrace{idotsint}_k x^{(k)}dx\            
            end{split}
            ]
        end{itemize}    
        
    ewpage
        part{常微分方程组}
        section*{常微分方程组逻辑关系图解}
        egin{center}%居中
            egin{tikzpicture}
            [
            grow=right,
            r/.style={rectangle,draw,fill=red!20,align=center,rounded corners=.8ex},
            g/.style={rectangle,draw,fill=green!20,align=center,rounded corners=.8ex},
            b/.style={rectangle,draw,fill=blue!20,align=center,rounded corners=.8ex},
            grow via three points={one child at (4,-2) and two children at (4,-2) and (4,-4)},
            edge from parent path={(	ikzparentnode.south)|-(	ikzchildnode.west)},
            ]%属性定义
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
            123
            
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
            end{tikzpicture}
        end{center}
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
    end{document}
  • 相关阅读:
    数据分析入门_char01
    [转]在Goolge安装谷歌插件Postman
    Ubutu 14.04 Fiddler Android抓包
    Ubuntu14.04 install appium
    【转】ubuntu修改时区和时间的方法
    MongoDB权威指南<2> 1-2 MongoDB 介绍
    python数据类型-字典
    python数据类型-列表
    python数据类型-字符串
    python编码以及格式化输出
  • 原文地址:https://www.cnblogs.com/blog-3123958139/p/5685360.html
Copyright © 2020-2023  润新知