In this problem your goal is to sort an array consisting of n integers in at most n swaps. For the given array find the sequence of swaps that makes the array sorted in the non-descending order. Swaps are performed consecutively, one after another.
Note that in this problem you do not have to minimize the number of swaps — your task is to find any sequence that is no longer than n.
The first line of the input contains integer n (1 ≤ n ≤ 3000) — the number of array elements. The second line contains elements of array: a0, a1, ..., an - 1 ( - 109 ≤ ai ≤ 109), where ai is the i-th element of the array. The elements are numerated from 0 to n - 1 from left to right. Some integers may appear in the array more than once.
In the first line print k (0 ≤ k ≤ n) — the number of swaps. Next k lines must contain the descriptions of the k swaps, one per line. Each swap should be printed as a pair of integers i, j (0 ≤ i, j ≤ n - 1), representing the swap of elements ai and aj. You can print indices in the pairs in any order. The swaps are performed in the order they appear in the output, from the first to the last. It is allowed to print i = jand swap the same pair of elements multiple times.
If there are multiple answers, print any of them. It is guaranteed that at least one answer exists.
5 5 2 5 1 4
2 0 3 4 2
6 10 20 20 40 60 60
0
2 101 100
10 1
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int a[3010]; int b[120]; int vis[120]; typedef pair<int,int> P; P m[3010]; int main() { #ifdef xxz freopen("in.txt","r",stdin); #endif // [xxz int n; cin>>n; for(int i = 0; i < n; i++) cin>>a[i]; int sum = 0,ans = 0; int i,j; for(i = 0; i < n; i++) { int x = a[i]; int y = i; for( j = i+1; j < n; j++) { if(x > a[j]) { x = a[j]; y = j; } } if(y != i) { m[sum].first = i; m[sum++].second = y; swap(a[i],a[y]); ans++; } } cout<<ans<<endl; for(int i = 0; i < ans; i++) { cout<<m[i].first<<" "<<m[i].second<<endl; } return 0; }#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int a[120]; int b[120]; int vis[120]; int main() { #ifdef xxz freopen("in.txt","r",stdin); #endif // [xxz int n,m; cin>>n; for(int i = 0; i < n; i++) cin>>a[i]; sort(a,a+n); cin>>m; for(int i = 0; i < m; i++) cin>>b[i],vis[i] = 0; sort(b,b+m); int sum = 0; int j; for(int i =0; i < n; i++) { for( int j = 0; j < m; j++) { if(vis[j] == 0 && abs(a[i] - b[j]) <= 1 ) { sum++; vis[j] = 1; break; } } } cout<<sum<<endl; return 0; }C. Given Length and Sum of Digits...time limit per test1 secondmemory limit per test256 megabytesinputstandard inputoutputstandard outputYou have a positive integer m and a non-negative integer s. Your task is to find the smallest and the largest of the numbers that have length m and sum of digits s. The required numbers should be non-negative integers written in the decimal base without leading zeroes.
InputThe single line of the input contains a pair of integers m, s (1 ≤ m ≤ 100, 0 ≤ s ≤ 900) — the length and the sum of the digits of the required numbers.
OutputIn the output print the pair of the required non-negative integer numbers — first the minimum possible number, then — the maximum possible number. If no numbers satisfying conditions required exist, print the pair of numbers "-1 -1" (without the quotes).
Sample test(s)input2 15output69 96input3 0output-1 -1#include <iostream> #include <algorithm> #include <cstdio> using namespace std; bool can(int m, int s) { if(s >= 0 && 9*m >= s) return true; else return false; } int main() { int m,s; cin>>m>>s; if(!can(m,s)) { cout<<"-1"<<" "<<"-1"<<endl; return 0; } if(m == 1) { if(s >= 10) { cout<<"-1"<<" "<<"-1"<<endl; } else cout<<s<<" "<<s<<endl; } else { if(s == 0) cout<<"-1"<<" "<<"-1"<<endl; else { string minn, maxn; int sum = s; for(int i = 1; i <= m; i++) for(int j = 0; j < 10; j++) { if((j > 0 || (j == 0 && i > 1) ) && can(m - i, sum - j)) { minn += char('0' + j); sum -= j; break; } } sum = s; for(int i = 1; i <= m; i++) for(int j = 9; j >= 0; j--) { if(can(m - i, sum - j)) { maxn += char('0' + j); sum -= j; break; } } cout<<minn<<" "<<maxn<<endl; } } return 0; }