Permutation Sequence
The set [1,2,3,…,n]
contains a
total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
如果有n个元素,第K个permutation是a1, a2, a3, ..... ..., an,那么a1是哪一个数字呢?
那么这里,我们把a1去掉,那么剩下的permutation为:a2, a3, .... .... an, 共计n-1个元素。 n-1个元素共同拥有(n-1)!组排列,那么这里就能够知道
设变量K1 = K-1
a1 = K1 / (n-1)!// 即a1是1~n中未使用过的第a1个元素,比如,刚開始时,若a1 = 1,则结果的第一个元素是2
同理,a2的值能够推导为
K2 = K1 % (n-1)! //前面的a1*(n-1)!已经增加,所以要去掉
a2 = K2 / (n-2)!
。。。。。
K(n-1) = K(n-2) /2!
a(n-1) = K(n-1) / 1!
an = K(n-1)
class Solution { public: string getPermutation(int n, int k) { int data[10];//保存阶层的值 bool hashUse[10]; memset(hashUse,false,sizeof(bool)*10); int i,j; data[0] = data[1] = 1; for(i = 2;i <= n;++i)data[i] = data[i-1] * i; k --; string res; for(i = n - 1;i >= 0;--i) { int value = k / data[i]; for(j = 1;j <= n;++j)//查找第value大且未使用过的值 { if(!hashUse[j])value--; if(value < 0)break; } hashUse[j] = true; res += j + '0'; k %= data[i]; } return res; } };