• Bellman 算法


    这道题目事实上就是在求有没有正环。与求负环的差别就是要不断的更新值,可是这个值要变大。而不是变小。

    Currency Exchange
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 20441   Accepted: 7337

    Description

    Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
    For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
    You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. 
    Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

    Input

    The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103
    For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102
    Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104

    Output

    If Nick can increase his wealth, output YES, in other case output NO to the output file.

    Sample Input

    3 2 1 20.0
    1 2 1.00 1.00 1.00 1.00
    2 3 1.10 1.00 1.10 1.00
    

    Sample Output

    YES
    #include <stdio.h>
    #include <stdlib.h>
    #include <malloc.h>
    #include <limits.h>
    #include <ctype.h>
    #include <string.h>
    #include <string>
    #include <math.h>
    #include <algorithm>
    #include <iostream>
    #include <queue>
    #include <stack>
    #include <deque>
    #include <vector>
    #include <set>
    #include <map>
    using namespace std;
    const int INF = 99999999.9;
    const int EM = 5555;
    const int VM = 110;
    int n,m,s;
    double mon;
    
    struct Edge{
        int u,v;
        double com;
        double exg;
    }edge[EM<<1];
    int cnt;
    double dis[VM];
    //double mon;
    
    /*void addage(int cu,int vu,double aa,double bb){
        edge[cnt].from = cu;
        edge[cnt].to = vu;
        edge[cnt].com = aa;
        edge[cnt].exg = bb;
        cnt++;
    }*/
    
    int Bellman(){
        int i,j,flag;
        for(i=1;i<=n;i++){
            dis[i] = 0.0;
        }
        dis[s] = mon;
        for(i=1;i<n;i++){
            bool flag = false;
            for(j=0;j<cnt;j++){
                int u = edge[j].u;
                int v = edge[j].v;
                double rate = edge[j].exg;
                double cost = edge[j].com;
                if(dis[v]<(dis[u]-cost)*rate)//求最大的路径
                {
                    dis[v]=(dis[u]-cost)*rate;
                    flag=true;
                }
                //if(dis[edge[j].to] < (dis[edge[j].from]-edge[j].com)*edge[j].exg){
                //    dis[edge[j].to] = (dis[edge[j].from]-edge[j].com)*edge[j].exg;
                //    flag = 1;
                //}
            }
            if(flag==false){
                return false;
            }
        }
        for(j=0; j<cnt; j++)
        {
            if(dis[edge[j].v]<(dis[edge[j].u]-edge[j].com)*edge[j].exg)//与传统的bell不一样,传统的bell是找负环。如今是找正环,正环无限松弛
                return true;
        }
        return false;
    }
    
    int main(){
        //int n,m,s;
        //double mon;
        double rab,cab,rba,cba;
        int marka,markb;
    
        while(~scanf("%d%d%d%lf",&n,&m,&s,&mon)){
            cnt = 0;
            //flag = 1;
            while(m--){
                scanf("%d%d%lf%lf%lf%lf",&marka,&markb,&rab,&cab,&rba,&cba);
                //addage(marka,markb,a2,a1);
                //addage(markb,marka,b2,b1);
                edge[cnt].u=marka,edge[cnt].v=markb,edge[cnt].com=cab,edge[cnt].exg=rab;
                cnt++;
                edge[cnt].u=markb,edge[cnt].v=marka,edge[cnt].com=cba,edge[cnt].exg=rba;
                cnt++;
            }
            if(Bellman()){
                printf("YES
    ");
            }
            else{
                printf("NO
    ");
            }
        }
    
        return 0;
    }
    


  • 相关阅读:
    Java类与对象
    读《大道至简——团队缺乏的不只是管理》有感
    java课后作业
    c++ 创建单项链表
    c++ 结构指针和双向链表
    c++ 自定义数据结构运用
    c++ 时间函数和结构化数据
    c++ 结束程序的几种方式
    c++ main函数的参数
    c++ 参数个数可变的函数
  • 原文地址:https://www.cnblogs.com/blfshiye/p/4071101.html
Copyright © 2020-2023  润新知