• scrapy框架的日志等级和请求传参


    scrapy框架的日志等级和请求传参

    今日概要

    • 日志等级
    • 请求传参
    • 如何提高scrapy的爬取效率

    今日详情

    一.Scrapy的日志等级

    • 在使用scrapy crawl spiderFileName运行程序时,在终端里打印输出的就是scrapy的日志信息。

    • 日志信息的种类:

            ERROR : 一般错误

            WARNING : 警告

            INFO : 一般的信息

            DEBUG : 调试信息

           

    • 设置日志信息指定输出:

        在settings.py配置文件中,加入

    ​ LOG_LEVEL = ‘指定日志信息种类’即可。

    ​ LOG_FILE = 'log.txt'则表示将日志信息写入到指定文件中进行存储。

    二.请求传参

    • 在某些情况下,我们爬取的数据不在同一个页面中,例如,我们爬取一个电影网站,电影的名称,评分在一级页面,而要爬取的其他电影详情在其二级子页面中。这时我们就需要用到请求传参。

    • 案例展示:爬取www.id97.com电影网,将一级页面中的电影名称,类型,评分一级二级页面中的上映时间,导演,片长进行爬取。

      爬虫文件:

    # -*- coding: utf-8 -*-
    import scrapy
    from moviePro.items import MovieproItem
    
    class MovieSpider(scrapy.Spider):
        name = 'movie'
        allowed_domains = ['www.id97.com']
        start_urls = ['http://www.id97.com/']
    
        def parse(self, response):
            div_list = response.xpath('//div[@class="col-xs-1-5 movie-item"]')
    
            for div in div_list:
                item = MovieproItem()
                item['name'] = div.xpath('.//h1/a/text()').extract_first()
                item['score'] = div.xpath('.//h1/em/text()').extract_first()
                #xpath(string(.))表示提取当前节点下所有子节点中的数据值(.)表示当前节点
                item['kind'] = div.xpath('.//div[@class="otherinfo"]').xpath('string(.)').extract_first()
                item['detail_url'] = div.xpath('./div/a/@href').extract_first()
                #请求二级详情页面,解析二级页面中的相应内容,通过meta参数进行Request的数据传递
                yield scrapy.Request(url=item['detail_url'],callback=self.parse_detail,meta={'item':item})
    
        def parse_detail(self,response):
            #通过response获取item
            item = response.meta['item']
            item['actor'] = response.xpath('//div[@class="row"]//table/tr[1]/a/text()').extract_first()
            item['time'] = response.xpath('//div[@class="row"]//table/tr[7]/td[2]/text()').extract_first()
            item['long'] = response.xpath('//div[@class="row"]//table/tr[8]/td[2]/text()').extract_first()
            #提交item到管道
            yield item
    

    img点击并拖拽以移动

      items文件:

    # -*- coding: utf-8 -*-
    
    # Define here the models for your scraped items
    #
    # See documentation in:
    # https://doc.scrapy.org/en/latest/topics/items.html
    
    import scrapy
    
    
    class MovieproItem(scrapy.Item):
        # define the fields for your item here like:
        name = scrapy.Field()
        score = scrapy.Field()
        time = scrapy.Field()
        long = scrapy.Field()
        actor = scrapy.Field()
        kind = scrapy.Field()
        detail_url = scrapy.Field()
    

    img点击并拖拽以移动

    管道文件:

    # -*- coding: utf-8 -*-
    
    # Define your item pipelines here
    #
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
    
    import json
    class MovieproPipeline(object):
        def __init__(self):
            self.fp = open('data.txt','w')
        def process_item(self, item, spider):
            dic = dict(item)
            print(dic)
            json.dump(dic,self.fp,ensure_ascii=False)
            return item
        def close_spider(self,spider):
            self.fp.close()
    

    img点击并拖拽以移动

    三.如何提高scrapy的爬取效率

    增加并发:
        默认scrapy开启的并发线程为32个,可以适当进行增加。在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置成了为100。
    
    降低日志级别:
        在运行scrapy时,会有大量日志信息的输出,为了减少CPU的使用率。可以设置log输出信息为INFO或者ERROR即可。在配置文件中编写:LOG_LEVEL = ‘INFO’
    
    禁止cookie:
        如果不是真的需要cookie,则在scrapy爬取数据时可以进制cookie从而减少CPU的使用率,提升爬取效率。在配置文件中编写:COOKIES_ENABLED = False
    
    禁止重试:
        对失败的HTTP进行重新请求(重试)会减慢爬取速度,因此可以禁止重试。在配置文件中编写:RETRY_ENABLED = False
    
    减少下载超时:
        如果对一个非常慢的链接进行爬取,减少下载超时可以能让卡住的链接快速被放弃,从而提升效率。在配置文件中进行编写:DOWNLOAD_TIMEOUT = 10 超时时间为10s
    

    img点击并拖拽以移动

    测试案例:爬取校花网校花图片 www.521609.com

    # -*- coding: utf-8 -*-
    import scrapy
    from xiaohua.items import XiaohuaItem
    
    class XiahuaSpider(scrapy.Spider):
    
        name = 'xiaohua'
        allowed_domains = ['www.521609.com']
        start_urls = ['http://www.521609.com/daxuemeinv/']
    
        pageNum = 1
        url = 'http://www.521609.com/daxuemeinv/list8%d.html'
    
        def parse(self, response):
            li_list = response.xpath('//div[@class="index_img list_center"]/ul/li')
            for li in li_list:
                school = li.xpath('./a/img/@alt').extract_first()
                img_url = li.xpath('./a/img/@src').extract_first()
    
                item = XiaohuaItem()
                item['school'] = school
                item['img_url'] = 'http://www.521609.com' + img_url
    
                yield item
    
            if self.pageNum < 10:
                self.pageNum += 1
                url = format(self.url % self.pageNum)
                #print(url)
                yield scrapy.Request(url=url,callback=self.parse)
    

    img点击并拖拽以移动

    # -*- coding: utf-8 -*-
    
    # Define here the models for your scraped items
    #
    # See documentation in:
    # https://doc.scrapy.org/en/latest/topics/items.html
    
    import scrapy
    
    
    class XiaohuaItem(scrapy.Item):
        # define the fields for your item here like:
        # name = scrapy.Field()
        school=scrapy.Field()
        img_url=scrapy.Field()
    

    img点击并拖拽以移动

    # -*- coding: utf-8 -*-
    
    # Define your item pipelines here
    #
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
    
    import json
    import os
    import urllib.request
    class XiaohuaPipeline(object):
        def __init__(self):
            self.fp = None
    
        def open_spider(self,spider):
            print('开始爬虫')
            self.fp = open('./xiaohua.txt','w')
    
        def download_img(self,item):
            url = item['img_url']
            fileName = item['school']+'.jpg'
            if not os.path.exists('./xiaohualib'):
                os.mkdir('./xiaohualib')
            filepath = os.path.join('./xiaohualib',fileName)
            urllib.request.urlretrieve(url,filepath)
            print(fileName+"下载成功")
    
        def process_item(self, item, spider):
            obj = dict(item)
            json_str = json.dumps(obj,ensure_ascii=False)
            self.fp.write(json_str+'
    ')
    
            #下载图片
            self.download_img(item)
            return item
    
        def close_spider(self,spider):
            print('结束爬虫')
            self.fp.close()
    

    img点击并拖拽以移动

    配置文件:

    USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36'
    
    # Obey robots.txt rules
    ROBOTSTXT_OBEY = False
    
    # Configure maximum concurrent requests performed by Scrapy (default: 16)
    CONCURRENT_REQUESTS = 100
    COOKIES_ENABLED = False
    LOG_LEVEL = 'ERROR'
    RETRY_ENABLED = False
    DOWNLOAD_TIMEOUT = 3
    # Configure a delay for requests for the same website (default: 0)
    # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay
    # See also autothrottle settings and docs
    # The download delay setting will honor only one of:
    #CONCURRENT_REQUESTS_PER_DOMAIN = 16
    #CONCURRENT_REQUESTS_PER_IP = 16
    DOWNLOAD_DELAY = 3
    
    python
  • 相关阅读:
    使用mybetis插件的公共方法进行查询
    bootstrap的刷新和查询
    消息队列的使用和注意事项
    MySQL 日期时间计算函数
    mysql基础学习网站
    html装换成字符串的工具、代码辅助工具
    正则校验数字,数字保留两位小数,字母,特殊符号和数字
    HTML表格和表单
    HTML标签
    媒体查询写法
  • 原文地址:https://www.cnblogs.com/bky20061005/p/12178172.html
Copyright © 2020-2023  润新知