• 004-JVM指令集(指令码、助记符、功能描述)


    一、JVM指令助记符

    1)操作数栈

      变量到操作数栈:iload,iload_,lload,lload_,fload,fload_,dload,dload_,aload,aload_
      操作数栈到变量:istore,istore_,lstore,lstore_,fstore,fstore_,dstore,dstor_,astore,astore_
      常数到操作数栈:bipush,sipush,ldc,ldc_w,ldc2_w,aconst_null,iconst_ml,iconst_,lconst_,fconst_,dconst_
      把数据装载到操作数栈:baload,caload,saload,iaload,laload,faload,daload,aaload
      从操作数栈存存储到数组:bastore,castore,sastore,iastore,lastore,fastore,dastore,aastore
      操作数栈管理:pop,pop2,dup,dup2,dup_xl,dup2_xl,dup_x2,dup2_x2,swap

    2)运算与转换

      加:iadd,ladd,fadd,dadd
      减:is ,ls ,fs ,ds
      乘:imul,lmul,fmul,dmul
      除:idiv,ldiv,fdiv,ddiv
      余数:irem,lrem,frem,drem
      取负:ineg,lneg,fneg,dneg
      移位:ishl,lshr,iushr,lshl,lshr,lushr
      按位或:ior,lor
      按位与:iand,land
      按位异或:ixor,lxor
      类型转换:i2l,i2f,i2d,l2f,l2d,f2d(放宽数值转换)
        i2b,i2c,i2s,l2i,f2i,f2l,d2i,d2l,d2f(缩窄数值转换)

    3)条件转移

      有条件转移:ifeq,iflt,ifle,ifne,ifgt,ifge,ifnull,ifnonnull,if_icmpeq,if_icmpene,
        if_icmplt,if_icmpgt,if_icmple,if_icmpge,if_acmpeq,if_acmpne,lcmp,fcmpl,fcmpg,dcmpl,dcmpg
      复合条件转移:tableswitch,lookupswitch
      无条件转移:goto,goto_w,jsr,jsr_w,ret

    4)类与数组

      创建类实便:new
      创建新数组:newarray,anewarray,multianwarray
      访问类的域和类实例域:getfield,putfield,getstatic,putstatic
      获取数组长度:arraylength
      检相类实例或数组属性:instanceof,checkcast

    5)调度与返回加finally

      调度对象的实便方法:invokevirt l
      调用由接口实现的方法:invokeinterface
      调用需要特殊处理的实例方法:invokespecial
      调用命名类中的静态方法:invokestatic
      方法返回:ireturn,lreturn,freturn,dreturn,areturn,return
      异常:athrow
      finally关键字的实现使用:jsr,jsr_w,ret

    二、JVM指令集

    原文地址:https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

    MnemonicOpcode
    (in hex)
    Opcode (in binary)Other bytes
    [count]: [operand labels]
    Stack
    [before]→[after]
    Description
    nop 00 0000 0000   [No change] perform no operation
    aconst_null 01 0000 0001   → null push a null reference onto the stack
    iconst_m1 02 0000 0010   → -1 load the int value −1 onto the stack
    iconst_0 03 0000 0011   → 0 load the int value 0 onto the stack
    iconst_1 04 0000 0100   → 1 load the int value 1 onto the stack
    iconst_2 05 0000 0101   → 2 load the int value 2 onto the stack
    iconst_3 06 0000 0110   → 3 load the int value 3 onto the stack
    iconst_4 07 0000 0111   → 4 load the int value 4 onto the stack
    iconst_5 08 0000 1000   → 5 load the int value 5 onto the stack
    lconst_0 09 0000 1001   → 0L push 0L (the number zero with type long) onto the stack
    lconst_1 0a 0000 1010   → 1L push 1L (the number one with type long) onto the stack
    fconst_0 0b 0000 1011   → 0.0f push 0.0f on the stack
    fconst_1 0c 0000 1100   → 1.0f push 1.0f on the stack
    fconst_2 0d 0000 1101   → 2.0f push 2.0f on the stack
    dconst_0 0e 0000 1110   → 0.0 push the constant 0.0 (a double) onto the stack
    dconst_1 0f 0000 1111   → 1.0 push the constant 1.0 (a double) onto the stack
    bipush 10 0001 0000 1: byte → value push a byte onto the stack as an integer value
    sipush 11 0001 0001 2: byte1, byte2 → value push a short onto the stack as an integer value
    ldc 12 0001 0010 1: index → value push a constant #index from a constant pool (String, int, float, Class, java.lang.invoke.MethodType, or java.lang.invoke.MethodHandle) onto the stack
    ldc_w 13 0001 0011 2: indexbyte1, indexbyte2 → value push a constant #index from a constant pool (String, int, float, Class, java.lang.invoke.MethodType, or java.lang.invoke.MethodHandle) onto the stack (wide index is constructed as indexbyte1 << 8 + indexbyte2)
    ldc2_w 14 0001 0100 2: indexbyte1, indexbyte2 → value push a constant #index from a constant pool (double or long) onto the stack (wide index is constructed as indexbyte1 << 8 + indexbyte2)
    iload 15 0001 0101 1: index → value load an int value from a local variable #index
    lload 16 0001 0110 1: index → value load a long value from a local variable #index
    fload 17 0001 0111 1: index → value load a float value from a local variable #index
    dload 18 0001 1000 1: index → value load a double value from a local variable #index
    aload 19 0001 1001 1: index → objectref load a reference onto the stack from a local variable #index
    iload_0 1a 0001 1010   → value load an int value from local variable 0
    iload_1 1b 0001 1011   → value load an int value from local variable 1
    iload_2 1c 0001 1100   → value load an int value from local variable 2
    iload_3 1d 0001 1101   → value load an int value from local variable 3
    lload_0 1e 0001 1110   → value load a long value from a local variable 0
    lload_1 1f 0001 1111   → value load a long value from a local variable 1
    lload_2 20 0010 0000   → value load a long value from a local variable 2
    lload_3 21 0010 0001   → value load a long value from a local variable 3
    fload_0 22 0010 0010   → value load a float value from local variable 0
    fload_1 23 0010 0011   → value load a float value from local variable 1
    fload_2 24 0010 0100   → value load a float value from local variable 2
    fload_3 25 0010 0101   → value load a float value from local variable 3
    dload_0 26 0010 0110   → value load a double from local variable 0
    dload_1 27 0010 0111   → value load a double from local variable 1
    dload_2 28 0010 1000   → value load a double from local variable 2
    dload_3 29 0010 1001   → value load a double from local variable 3
    aload_0 2a 0010 1010   → objectref load a reference onto the stack from local variable 0
    aload_1 2b 0010 1011   → objectref load a reference onto the stack from local variable 1
    aload_2 2c 0010 1100   → objectref load a reference onto the stack from local variable 2
    aload_3 2d 0010 1101   → objectref load a reference onto the stack from local variable 3
    iaload 2e 0010 1110   arrayref, index → value load an int from an array
    laload 2f 0010 1111   arrayref, index → value load a long from an array
    faload 30 0011 0000   arrayref, index → value load a float from an array
    daload 31 0011 0001   arrayref, index → value load a double from an array
    aaload 32 0011 0010   arrayref, index → value load onto the stack a reference from an array
    baload 33 0011 0011   arrayref, index → value load a byte or Boolean value from an array
    caload 34 0011 0100   arrayref, index → value load a char from an array
    saload 35 0011 0101   arrayref, index → value load short from array
    istore 36 0011 0110 1: index value → store int value into variable #index
    lstore 37 0011 0111 1: index value → store a long value in a local variable #index
    fstore 38 0011 1000 1: index value → store a float value into a local variable #index
    dstore 39 0011 1001 1: index value → store a double value into a local variable #index
    astore 3a 0011 1010 1: index objectref → store a reference into a local variable #index
    istore_0 3b 0011 1011   value → store int value into variable 0
    istore_1 3c 0011 1100   value → store int value into variable 1
    istore_2 3d 0011 1101   value → store int value into variable 2
    istore_3 3e 0011 1110   value → store int value into variable 3
    lstore_0 3f 0011 1111   value → store a long value in a local variable 0
    lstore_1 40 0100 0000   value → store a long value in a local variable 1
    lstore_2 41 0100 0001   value → store a long value in a local variable 2
    lstore_3 42 0100 0010   value → store a long value in a local variable 3
    fstore_0 43 0100 0011   value → store a float value into local variable 0
    fstore_1 44 0100 0100   value → store a float value into local variable 1
    fstore_2 45 0100 0101   value → store a float value into local variable 2
    fstore_3 46 0100 0110   value → store a float value into local variable 3
    dstore_0 47 0100 0111   value → store a double into local variable 0
    dstore_1 48 0100 1000   value → store a double into local variable 1
    dstore_2 49 0100 1001   value → store a double into local variable 2
    dstore_3 4a 0100 1010   value → store a double into local variable 3
    astore_0 4b 0100 1011   objectref → store a reference into local variable 0
    astore_1 4c 0100 1100   objectref → store a reference into local variable 1
    astore_2 4d 0100 1101   objectref → store a reference into local variable 2
    astore_3 4e 0100 1110   objectref → store a reference into local variable 3
    iastore 4f 0100 1111   arrayref, index, value → store an int into an array
    lastore 50 0101 0000   arrayref, index, value → store a long to an array
    fastore 51 0101 0001   arrayref, index, value → store a float in an array
    dastore 52 0101 0010   arrayref, index, value → store a double into an array
    aastore 53 0101 0011   arrayref, index, value → store into a reference in an array
    bastore 54 0101 0100   arrayref, index, value → store a byte or Boolean value into an array
    castore 55 0101 0101   arrayref, index, value → store a char into an array
    sastore 56 0101 0110   arrayref, index, value → store short to array
    pop 57 0101 0111   value → discard the top value on the stack
    pop2 58 0101 1000   {value2, value1} → discard the top two values on the stack (or one value, if it is a double or long)
    dup 59 0101 1001   value → value, value duplicate the value on top of the stack
    dup_x1 5a 0101 1010   value2, value1 → value1, value2, value1 insert a copy of the top value into the stack two values from the top. value1 and value2 must not be of the type double or long.
    dup_x2 5b 0101 1011   value3, value2, value1 → value1, value3, value2, value1 insert a copy of the top value into the stack two (if value2 is double or long it takes up the entry of value3, too) or three values (if value2 is neither double nor long) from the top
    dup2 5c 0101 1100   {value2, value1} → {value2, value1}, {value2, value1} duplicate top two stack words (two values, if value1 is not double nor long; a single value, if value1 is double or long)
    dup2_x1 5d 0101 1101   value3, {value2, value1} → {value2, value1}, value3, {value2, value1} duplicate two words and insert beneath third word (see explanation above)
    dup2_x2 5e 0101 1110   {value4, value3}, {value2, value1} → {value2, value1}, {value4, value3}, {value2, value1} duplicate two words and insert beneath fourth word
    swap 5f 0101 1111   value2, value1 → value1, value2 swaps two top words on the stack (note that value1 and value2 must not be double or long)
    iadd 60 0110 0000   value1, value2 → result add two ints
    ladd 61 0110 0001   value1, value2 → result add two longs
    fadd 62 0110 0010   value1, value2 → result add two floats
    dadd 63 0110 0011   value1, value2 → result add two doubles
    isub 64 0110 0100   value1, value2 → result int subtract
    lsub 65 0110 0101   value1, value2 → result subtract two longs
    fsub 66 0110 0110   value1, value2 → result subtract two floats
    dsub 67 0110 0111   value1, value2 → result subtract a double from another
    imul 68 0110 1000   value1, value2 → result multiply two integers
    lmul 69 0110 1001   value1, value2 → result multiply two longs
    fmul 6a 0110 1010   value1, value2 → result multiply two floats
    dmul 6b 0110 1011   value1, value2 → result multiply two doubles
    idiv 6c 0110 1100   value1, value2 → result divide two integers
    ldiv 6d 0110 1101   value1, value2 → result divide two longs
    fdiv 6e 0110 1110   value1, value2 → result divide two floats
    ddiv 6f 0110 1111   value1, value2 → result divide two doubles
    irem 70 0111 0000   value1, value2 → result logical int remainder
    lrem 71 0111 0001   value1, value2 → result remainder of division of two longs
    frem 72 0111 0010   value1, value2 → result get the remainder from a division between two floats
    drem 73 0111 0011   value1, value2 → result get the remainder from a division between two doubles
    ineg 74 0111 0100   value → result negate int
    lneg 75 0111 0101   value → result negate a long
    fneg 76 0111 0110   value → result negate a float
    dneg 77 0111 0111   value → result negate a double
    ishl 78 0111 1000   value1, value2 → result int shift left
    lshl 79 0111 1001   value1, value2 → result bitwise shift left of a long value1 by int value2 positions
    ishr 7a 0111 1010   value1, value2 → result int arithmetic shift right
    lshr 7b 0111 1011   value1, value2 → result bitwise shift right of a long value1 by int value2 positions
    iushr 7c 0111 1100   value1, value2 → result int logical shift right
    lushr 7d 0111 1101   value1, value2 → result bitwise shift right of a long value1 by int value2 positions, unsigned
    iand 7e 0111 1110   value1, value2 → result perform a bitwise AND on two integers
    land 7f 0111 1111   value1, value2 → result bitwise AND of two longs
    ior 80 1000 0000   value1, value2 → result bitwise int OR
    lor 81 1000 0001   value1, value2 → result bitwise OR of two longs
    ixor 82 1000 0010   value1, value2 → result int xor
    lxor 83 1000 0011   value1, value2 → result bitwise XOR of two longs
    iinc 84 1000 0100 2: index, const [No change] increment local variable #index by signed byte const
    i2l 85 1000 0101   value → result convert an int into a long
    i2f 86 1000 0110   value → result convert an int into a float
    i2d 87 1000 0111   value → result convert an int into a double
    l2i 88 1000 1000   value → result convert a long to a int
    l2f 89 1000 1001   value → result convert a long to a float
    l2d 8a 1000 1010   value → result convert a long to a double
    f2i 8b 1000 1011   value → result convert a float to an int
    f2l 8c 1000 1100   value → result convert a float to a long
    f2d 8d 1000 1101   value → result convert a float to a double
    d2i 8e 1000 1110   value → result convert a double to an int
    d2l 8f 1000 1111   value → result convert a double to a long
    d2f 90 1001 0000   value → result convert a double to a float
    i2b 91 1001 0001   value → result convert an int into a byte
    i2c 92 1001 0010   value → result convert an int into a character
    i2s 93 1001 0011   value → result convert an int into a short
    lcmp 94 1001 0100   value1, value2 → result push 0 if the two longs are the same, 1 if value1 is greater than value2, -1 otherwise
    fcmpl 95 1001 0101   value1, value2 → result compare two floats
    fcmpg 96 1001 0110   value1, value2 → result compare two floats
    dcmpl 97 1001 0111   value1, value2 → result compare two doubles
    dcmpg 98 1001 1000   value1, value2 → result compare two doubles
    ifeq 99 1001 1001 2: branchbyte1, branchbyte2 value → if value is 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    ifne 9a 1001 1010 2: branchbyte1, branchbyte2 value → if value is not 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    iflt 9b 1001 1011 2: branchbyte1, branchbyte2 value → if value is less than 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    ifge 9c 1001 1100 2: branchbyte1, branchbyte2 value → if value is greater than or equal to 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    ifgt 9d 1001 1101 2: branchbyte1, branchbyte2 value → if value is greater than 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    ifle 9e 1001 1110 2: branchbyte1, branchbyte2 value → if value is less than or equal to 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    if_icmpeq 9f 1001 1111 2: branchbyte1, branchbyte2 value1, value2 → if ints are equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    if_icmpne a0 1010 0000 2: branchbyte1, branchbyte2 value1, value2 → if ints are not equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    if_icmplt a1 1010 0001 2: branchbyte1, branchbyte2 value1, value2 → if value1 is less than value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    if_icmpge a2 1010 0010 2: branchbyte1, branchbyte2 value1, value2 → if value1 is greater than or equal to value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    if_icmpgt a3 1010 0011 2: branchbyte1, branchbyte2 value1, value2 → if value1 is greater than value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    if_icmple a4 1010 0100 2: branchbyte1, branchbyte2 value1, value2 → if value1 is less than or equal to value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    if_acmpeq a5 1010 0101 2: branchbyte1, branchbyte2 value1, value2 → if references are equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    if_acmpne a6 1010 0110 2: branchbyte1, branchbyte2 value1, value2 → if references are not equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    goto a7 1010 0111 2: branchbyte1, branchbyte2 [no change] goes to another instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    jsr a8 1010 1000 2: branchbyte1, branchbyte2 → address jump to subroutine at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2) and place the return address on the stack
    ret a9 1010 1001 1: index [No change] continue execution from address taken from a local variable #index (the asymmetry with jsr is intentional)
    tableswitch aa 1010 1010 16+: [0–3 bytes padding], defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, lowbyte1, lowbyte2, lowbyte3, lowbyte4, highbyte1, highbyte2, highbyte3, highbyte4, jump offsets... index → continue execution from an address in the table at offset index
    lookupswitch ab 1010 1011 8+: <0–3 bytes padding>, defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, npairs1, npairs2, npairs3, npairs4, match-offset pairs... key → a target address is looked up from a table using a key and execution continues from the instruction at that address
    ireturn ac 1010 1100   value → [empty] return an integer from a method
    lreturn ad 1010 1101   value → [empty] return a long value
    freturn ae 1010 1110   value → [empty] return a float
    dreturn af 1010 1111   value → [empty] return a double from a method
    areturn b0 1011 0000   objectref → [empty] return a reference from a method
    return b1 1011 0001   → [empty] return void from method
    getstatic b2 1011 0010 2: indexbyte1, indexbyte2 → value get a static field value of a class, where the field is identified by field reference in the constant pool index (indexbyte1 << 8 + indexbyte2)
    putstatic b3 1011 0011 2: indexbyte1, indexbyte2 value → set static field to value in a class, where the field is identified by a field reference index in constant pool (indexbyte1 << 8 + indexbyte2)
    getfield b4 1011 0100 2: indexbyte1, indexbyte2 objectref → value get a field value of an object objectref, where the field is identified by field reference in the constant pool index (indexbyte1 << 8 + indexbyte2)
    putfield b5 1011 0101 2: indexbyte1, indexbyte2 objectref, value → set field to value in an object objectref, where the field is identified by a field reference index in constant pool (indexbyte1 << 8 + indexbyte2)
    invokevirtual b6 1011 0110 2: indexbyte1, indexbyte2 objectref, [arg1, arg2, ...] → result invoke virtual method on object objectref and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
    invokespecial b7 1011 0111 2: indexbyte1, indexbyte2 objectref, [arg1, arg2, ...] → result invoke instance method on object objectref and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
    invokestatic b8 1011 1000 2: indexbyte1, indexbyte2 [arg1, arg2, ...] → result invoke a static method and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
    invokeinterface b9 1011 1001 4: indexbyte1, indexbyte2, count, 0 objectref, [arg1, arg2, ...] → result invokes an interface method on object objectref and puts the result on the stack (might be void); the interface method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
    invokedynamic ba 1011 1010 4: indexbyte1, indexbyte2, 0, 0 [arg1, [arg2 ...]] → result invokes a dynamic method and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
    new bb 1011 1011 2: indexbyte1, indexbyte2 → objectref create new object of type identified by class reference in constant pool index (indexbyte1 << 8 + indexbyte2)
    newarray bc 1011 1100 1: atype count → arrayref create new array with count elements of primitive type identified by atype
    anewarray bd 1011 1101 2: indexbyte1, indexbyte2 count → arrayref create a new array of references of length count and component type identified by the class reference index (indexbyte1 << 8 + indexbyte2) in the constant pool
    arraylength be 1011 1110   arrayref → length get the length of an array
    athrow bf 1011 1111   objectref → [empty], objectref throws an error or exception (notice that the rest of the stack is cleared, leaving only a reference to the Throwable)
    checkcast c0 1100 0000 2: indexbyte1, indexbyte2 objectref → objectref checks whether an objectref is of a certain type, the class reference of which is in the constant pool at index (indexbyte1 << 8 + indexbyte2)
    instanceof c1 1100 0001 2: indexbyte1, indexbyte2 objectref → result determines if an object objectref is of a given type, identified by class reference index in constant pool (indexbyte1 << 8 + indexbyte2)
    monitorenter c2 1100 0010   objectref → enter monitor for object ("grab the lock" – start of synchronized() section)
    monitorexit c3 1100 0011   objectref → exit monitor for object ("release the lock" – end of synchronized() section)
    wide c4 1100 0100 3/5: opcode, indexbyte1, indexbyte2
    or
    iinc, indexbyte1, indexbyte2, countbyte1, countbyte2
    [same as for corresponding instructions] execute opcode, where opcode is either iload, fload, aload, lload, dload, istore, fstore, astore, lstore, dstore, or ret, but assume the index is 16 bit; or execute iinc, where the index is 16 bits and the constant to increment by is a signed 16 bit short
    multianewarray c5 1100 0101 3: indexbyte1, indexbyte2, dimensions count1, [count2,...] → arrayref create a new array of dimensions dimensions of type identified by class reference in constant pool index (indexbyte1 << 8 + indexbyte2); the sizes of each dimension is identified by count1, [count2, etc.]
    ifnull c6 1100 0110 2: branchbyte1, branchbyte2 value → if value is null, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    ifnonnull c7 1100 0111 2: branchbyte1, branchbyte2 value → if value is not null, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
    goto_w c8 1100 1000 4: branchbyte1, branchbyte2, branchbyte3, branchbyte4 [no change] goes to another instruction at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4)
    jsr_w c9 1100 1001 4: branchbyte1, branchbyte2, branchbyte3, branchbyte4 → address jump to subroutine at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4) and place the return address on the stack
    breakpoint ca 1100 1010     reserved for breakpoints in Java debuggers; should not appear in any class file
    (no name) cb-fd       these values are currently unassigned for opcodes and are reserved for future use
    impdep1 fe 1111 1110     reserved for implementation-dependent operations within debuggers; should not appear in any class file
    impdep2 ff 1111 1111     reserved for implementation-dependent operations within debuggers; should not appear in any class file
  • 相关阅读:
    dubbo
    常见线程池
    面试之葵花宝典
    Java线程池
    DB2分页
    平凡
    自由职业一时爽,一直自由一直爽
    弱水三千,只取一瓢。
    没病到一定程度,你千万别去。
    一个转身一个轮回
  • 原文地址:https://www.cnblogs.com/bjlhx/p/8856297.html
Copyright © 2020-2023  润新知