Problem Description
Given the sequence A with n integers t1,t2,⋯,tn. Given the integral coefficients a and b. The fact that select two elements ti and tj of A and i≠j to maximize the value of at2i+btj, becomes the largest point.
Input
An positive integer T, indicating there are T test cases.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×106), a (0≤|a|≤106) and b (0≤|b|≤106). The second line contains n integers t1,t2,⋯,tn where 0≤|ti|≤106 for 1≤i≤n.
The sum of n for all cases would not be larger than 5×106.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×106), a (0≤|a|≤106) and b (0≤|b|≤106). The second line contains n integers t1,t2,⋯,tn where 0≤|ti|≤106 for 1≤i≤n.
The sum of n for all cases would not be larger than 5×106.
Output
The output contains exactly T lines.
For each test case, you should output the maximum value of at2i+btj.
For each test case, you should output the maximum value of at2i+btj.
Sample Input
2
3 2 1
1 2 3
5 -1 0
-3 -3 0 3 3
Sample Output
Case #1: 20
Case #2: 0
数据范围不大,直接暴力求解
#include <iostream> #include <cstdio> #include <cstring> #include <stack> #include <queue> #include <map> #include <set> #include <vector> #include <cmath> #include <algorithm> using namespace std; const double eps = 1e-6; const double pi = acos(-1.0); const int INF = 0x3f3f3f3f; const int MOD = 1000000007; #define ll long long #define CL(a) memset(a,0,sizeof(a)) int T; ll n,a,b; ll t[1000010]; ll min1,min2,max1,max2,k;//分别存最小的数、第二小的数、最大的数、第二大的数和最接近0的数 int main () { scanf ("%d",&T); int d= 1; while(T--) { scanf ("%lld%lld%lld",&n,&a,&b); k=INF; for (int i=0; i<n; i++) scanf ("%lld",&t[i]); printf("Case #%d: ",d++); sort(t, t+n); for (int i=0; i<n; i++) { if (t[i]<=0&&t[i+1]>=0) k=min(-t[i], t[i+1]); } min1=t[0]; min2=t[1]; max1=t[n-1]; max2=t[n-2];//找出这五个数 if (a<0&&b<0)//然后就是苦逼的找最大解了,注意负数的平方为正数 printf ("%lld ",a*k*k+b*min1); else if (a<0&&b>0) printf ("%lld ",a*k*k+b*max1); else if (a>0&&b<0) printf ("%lld ",max(max(a*max1*max1+b*min1, a*min1*min1+b*min2), a*min2*min2+b*min1)); else if (a>0&&b>0) printf ("%lld ",max(max(a*max1*max1+b*max2, a*max2*max2+b*max1), a*min1*min1+b*max1)); else printf ("0 "); } return 0; }