• 数字货币量化教程——构造金融数据的数据结构


    1、数据准备

    price_str = '30.14, 29.58, 26.36, 32.56, 32.82'
    price_str = price_str.replace(' ', '')  #删除空格
    price_array = price_str.split(',')      #转成数组
    
    date_array = []
    date_base = 20170118
    

    2、构造日期

    #推导式comprehensions(又称解析式),是Python的一种独有特性。推导式是可以从一个数据序列构建另一个新的数据序列的结构体。
    #列表推导式

    date_array = [str(date_base + ind) for ind, _ in enumerate(price_array)]
    print(date_array)

    返回

    ['20170118', '20170119', '20170120', '20170121', '20170122']

    3、生成日期价格对

    3.1 列表格式

    # zip函数
    stock_tuple_list = [(date, price) for date, price in zip(date_array, price_array)] print(stock_tuple_list)

    返回

    [('20170118', '30.14'), ('20170119', '29.58'), ('20170120', '26.36'), ('20170121', '32.56'), ('20170122', '32.82')]

    3.2 字典格式

    #字典推导式
    stock_dict = {date: price for date, price in zip(date_array, price_array)}
    print(stock_dict)

    返回

    {'20170118': '30.14', '20170119': '29.58', '20170120': '26.36', '20170121': '32.56', '20170122': '32.82'}

    3.3 元组格式

    # 可命名元组 namedtuple
    from
    collections import namedtuple stock_nametuple = namedtuple('stock', ('date', 'price')) stock_nametuple_list = [stock_nametuple(date, price) for date, price in zip(date_array, price_array)] print(stock_nametuple_list)

    返回

    [stock(date='20170118', price='30.14'), stock(date='20170119', price='29.58'), stock(date='20170120', price='26.36'), stock(date='20170121', price='32.56'), stock(date='20170122', price='32.82')]



    # 有序字典 OrderedDict
    from collections import OrderedDict
    stock_dict = OrderedDict((date, price) for date, price in zip(date_array, price_array))
    print(stock_dict.keys())

    返回

     odict_keys(['20170118', '20170119', '20170120', '20170121', '20170122'])
    #最小收盘价
    print(min(zip(stock_dict.values(), stock_dict.keys())))

    返回

    ('26.36', '20170120')
    #lambad函数
    func = lambda x:x+1
    #以上lambda等同于以下函数
    def func(x):
        return(x+1)
    #找出收盘价中第二大的价格
    find_second_max_lambda = lambda dict_array : sorted(zip(dict_array.values(), dict_array.keys()))[-2]
    print(find_second_max_lambda(stock_dict))

    返回

     ('32.56', '20170121')
    #高阶函数
    #将相邻的收盘价格组成tuple后装入list
    price_float_array = [float(price_str) for price_str in stock_dict.values()]
    pp_array = [(price1, price2) for price1, price2 in zip(price_float_array[:-1], price_float_array[1:])]
    print(pp_array)

    返回

     [(30.14, 29.58), (29.58, 26.36), (26.36, 32.56), (32.56, 32.82)]
    from functools import reduce
    #外层使用map函数针对pp_array()的每一个元素执行操作,内层使用reduce()函数即两个相邻的价格, 求出涨跌幅度,返回外层结果list
    change_array = list(map(lambda pp:reduce(lambda a,b: round((b-a) / a, 3),pp), pp_array))
    
    change_array.insert(0,0)
    print(change_array)

    返回

    [0, -0.019, -0.109, 0.235, 0.008]
    #将涨跌幅数据加入OrderedDict,配合使用namedtuple重新构建数据结构stock_dict
    stock_nametuple = namedtuple('stock', ('date', 'price', 'change'))
    stock_dict = OrderedDict((date, stock_nametuple(date, price, change))
                             for date, price, change in
                             zip(date_array, price_array, change_array))
    print(stock_dict)

    返回

    OrderedDict([('20170118', stock(date='20170118', price='30.14', change=0)), ('20170119', stock(date='20170119', price='29.58', change=-0.019)), ('20170120', stock(date='20170120', price='26.36', change=-0.109)), ('20170121', stock(date='20170121', price='32.56', change=0.235)), ('20170122', stock(date='20170122', price='32.82', change=0.008))])
    #用filter()进行筛选,选出上涨的交易日
    up_days = list(filter(lambda day: day.change > 0, stock_dict.values()))
    print(up_days)

    返回

    [stock(date='20170121', price='32.56', change=0.235), stock(date='20170122', price='32.82', change=0.008)]
    #定义函数计算涨跌日或涨跌值
    def filter_stock(stock_array_dict, want_up=True, want_calc_sum=False):
        if not isinstance(stock_array_dict, OrderedDict):
            raise TypeError('stock_array_dict must be OrderedDict')
    
        filter_func = (lambda day: day.change > 0) if want_up else (lambda day: day.change < 0)
    
        want_days = list(filter(filter_func, stock_array_dict.values()))
    
        if not want_calc_sum:
            return want_days
    
        change_sum = 0.0
        for day in want_days:
            change_sum += day.change
    
        return change_sum


        

    #偏函数 partial
    from functools import partial
    filter_stock_up_days    = partial(filter_stock, want_up=True,  want_calc_sum=False)
    filter_stock_down_days  = partial(filter_stock, want_up=False, want_calc_sum=False)
    filter_stock_up_sums    = partial(filter_stock, want_up=True,  want_calc_sum=True)
    filter_stock_down_sums  = partial(filter_stock, want_up=False, want_calc_sum=True)
    
    print('所有上涨的交易日:{}'.format(list(filter_stock_up_days(stock_dict))))
    print('所有下跌的交易日:{}'.format(list(filter_stock_down_days(stock_dict))))
    print('所有上涨交易日的涨幅和:{}'.format(filter_stock_up_sums(stock_dict)))
    print('所有下跌交易日的跌幅和:{}'.format(filter_stock_down_sums(stock_dict)))
    # 所有上涨的交易日:[stock(date='20170121', price='32.56', change=0.235), stock(date='20170122', price='32.82', change=0.008)]
    # 所有下跌的交易日:[stock(date='20170119', price='29.58', change=-0.019), stock(date='20170120', price='26.36', change=-0.109)]
    # 所有上涨交易日的涨幅和:0.243
    # 所有下跌交易日的跌幅和:-0.128



  • 相关阅读:
    NeHe OpenGL教程 第三十四课:地形
    NeHe OpenGL教程 第三十三课:TGA文件
    NeHe OpenGL教程 第三十二课:拾取游戏
    NeHe OpenGL教程 第三十一课:加载模型
    NeHe OpenGL教程 第三十课:碰撞检测
    58. Extjs grid CheckboxSelectionModel 单选
    57.部门职位管理 ExtJs 展示
    56. EditorGridPanel和渲染器renderer的使用
    55. GridPanel中getSelectionModel详解
    54. Extjs组件render说明
  • 原文地址:https://www.cnblogs.com/bitquant/p/10561060.html
Copyright © 2020-2023  润新知