• CF208E Blood Cousins(DSU,倍增)


    倍增求出祖先,( ext{DSU})统计
    本来想用树剖求(K)祖,来条链复杂度就假了

    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <iostream>
    #include <numeric>
    #define R(a,b,c) for(register int a = (b); a <= (c); ++a)
    #define nR(a,b,c) for(register int a = (b); a >= (c); --a)
    #define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
    #define MP make_pair
    #ifdef QWQ
    #define D_e_Line printf("
    ------
    ")
    #define D_e(x) cerr << (#x) << " " << x << endl
    #define C_e(x) cout << (#x) << " " << x << endl
    #define FileOpen() freopen("in.txt", "r", stdin)
    #define FileSave() freopen("out.txt", "w", stdout)
    #define Pause() system("pause")
    #include <cassert>
    #define PASS fprintf(stderr, "Passing [%s] in LINE %d
    ",__FUNCTION__,__LINE__)
    #else
    #define D_e_Line
    #define D_e(x)
    #define C_e(x)
    #define FileOpen()
    #define FileSave()
    #define Pause()
    #define PASS
    #endif
    using namespace std;
    struct FastIO {
    	template<typename ATP> inline FastIO& operator >> (ATP &x) {
    		x = 0; int sign = 1; char c;
    		for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') sign = -1;
    		while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
    		if(sign == -1) x = -x;
    		return *this;
    	}
    } io;
    template<typename ATP> inline ATP Max(ATP x, ATP y) {
    	return x > y ? x : y;
    }
    template<typename ATP> inline ATP Min(ATP x, ATP y) {
    	return x < y ? x : y;
    }
    template<typename ATP> inline ATP Abs(ATP x) {
    	return x < 0 ? -x : x;
    }
    #include <vector>
    const int N = 1e5 + 7; 
    struct Edge {
    	int nxt, pre;
    } e[N];
    int head[N], cntEdge;
    inline void add(int u, int v) {
    	e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
    }
    vector<pair<int, int>> q[N];
    int dep[N], fa[N][19], siz[N], top[N], dfn[N], dfnIdx, rnk[N], son[N];
    void DFS_First(int u, int father) {
    	dep[u] = dep[father] + 1, fa[u][0] = father, siz[u] = 1;
    	R(i,1,18){
    		if(fa[u][i - 1]) fa[u][i] = fa[fa[u][i - 1]][i - 1];
    		else break;
    	}
    	for(register int i = head[u]; i; i = e[i].nxt){
    		int v = e[i].pre;
    		DFS_First(v, u);
    		siz[u] += siz[v];
    		if(siz[v] > siz[son[u]]) son[u] = v;
    	}
    }
    void DFS_Second(int u, int Tp) {
    	top[u] = Tp, dfn[u] = ++dfnIdx, rnk[dfnIdx] = u;
    	if(!son[u]) return;
    	DFS_Second(son[u], Tp);
    	for(register int i = head[u]; i; i = e[i].nxt){
    		int v = e[i].pre;
    		if(v != son[u]) DFS_Second(v, v);
    	}
    }
    inline int Father(int u, int K) {
    //	while(dep[u] - dep[top[u]] + 1 <= K){
    //		K -= dep[u] - dep[top[u]] + 1;
    //		u = fa[top[u]];
    //	}
    //	return rnk[dfn[u] - K];
    
    	while(K){
    		int now = 0;
    		while((1 << (now + 1)) <= K) ++now;
    		u = fa[u][now];
    		K -= 1 << now;
    	}
    	return u;
    }
    int tot[N];
    bool big[N];
    void Add(int u) {
    	++tot[dep[u]];
    	for(register int i = head[u]; i; i = e[i].nxt){
    		int v = e[i].pre;
    		if(big[v]) continue;
    		Add(v);
    	}
    }
    void Del(int u) {
    	--tot[dep[u]];
    	for(register int i = head[u]; i; i = e[i].nxt){
    		int v = e[i].pre;
    		if(big[v]) continue;
    		Del(v);
    	}
    }
    int ans[N], n;
    void DSU(int u, bool flag) {
    	for(register int i = head[u]; i; i = e[i].nxt){
    		int v = e[i].pre;
    		if(v == son[u]) continue;
    		DSU(v, 0);
    	}
    	if(son[u]) DSU(son[u], 1), big[son[u]] = true;
    	Add(u);
    	for(vector<pair<int, int>>::iterator it = q[u].begin(); it != q[u].end(); ++it){
    		if(it->first + dep[u] <= n + 1){
    			ans[it->second] = tot[it->first + dep[u]] - 1;
    		}
    	}
    	big[son[u]] = false;
    	if(!flag) Del(u);
    }
    int main() {
    	int Q;
    	io >> n;
    	R(i,1,n){
    		int fat;
    		io >> fat;
    		++fat;
    		add(fat, i + 1);
    	}
    	DFS_First(1, 0);
    	DFS_Second(1, 1);
    //	while(1){
    //		int x, K;
    //		io >> x >> K;
    //		++x;
    //		cout << Father(x, K) - 1<< endl;
    //	}
    	io >> Q;
    	R(i,1,Q){
    		int x, K;
    		io >> x >> K;
    		++x;
    		x = Father(x, K);
    		if(x == 1){
    			continue;
    		}
    //		D_e(x - 1);
    		q[x].emplace_back(K, i);
    	}
    	DSU(1, 0);
    	
    	R(i,1,Q){
    		printf("%d ", ans[i]);
    	}
    	return 0;
    }
    /*
    6
    0 1 1 0 4 4
    7
    1 1
    1 2
    2 1
    2 2
    4 1
    5 1
    6 1
    */
    /*
    6
    0 1 2 3 4 5
    5 1
    */
    

  • 相关阅读:
    powerful number 小记
    CF573E Bear and Bowling
    Diary 2.0
    【LOJ2540】「PKUWC2018」随机算法
    【Luogu2496】【BZOJ3005】[SDOI2012]体育课
    CF-diary
    【CF1217F】Forced Online Queries Problem
    NOI2019 选做
    Codeforces Round #568 (Div. 2) 选做
    【LOJ2513】「BJOI2018」治疗之雨
  • 原文地址:https://www.cnblogs.com/bingoyes/p/11843249.html
Copyright © 2020-2023  润新知