• 总结-DSU ON TREE(树上启发式合并)


    考试遇到一道题:

    有一棵n个点的有根树,每个点有一个颜色,每次询问给定一个点(u)和一个数(k),询问(u)子是多少个不同颜色节点的(k)级祖先。n<=500000。

    显然对每一层建主席树可行,但还有更优雅的一种做法——(DSU)

    所谓(DSU),是一类处理子树信息的问题的通解((O(nlog n))

    其主要过程是树剖后,沿重儿子向下,优先统计轻儿子,并在统计结束后删除对轻儿子统计信息,最后删除对重儿子统计信息。
    参考代码

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <numeric>
    #define R(a,b,c) for(register int a = (b); a <= (c); ++a)
    #define nR(a,b,c) for(register int a = (b); a >= (c); --a)
    #define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
    #define MP make_pair
    #ifdef QWQ
    #define D_e_Line printf("
    --------
    ")
    #define C_e(x) cout << (#x) << " : " << x << endl
    #define D_e(x) cerr << (#x) << " : " << x << endl
    #define Pause() system("pause")
    #define FileOpen() freopen("in.txt", "r", stdin)
    #define FileSave() freopen("out.txt", "w", stdout)
    #include <assert.h>
    #define TIME() fprint(stderr, "TIME : %.3lfms
    ", (double)clock() / CLOCKS_PER_SEC)
    #define dbg(...) fprintf(stderr, __VA_ARGS__)
    #else
    #define D_e_Line
    #define D_e(x)
    #define C_e(x)
    #define Pause
    #define FileOpen()
    #define FileSave()
    #define TIME()
    #define dbg(...)
    #endif
    struct FastIO {
    	template<typename ATP> inline FastIO& operator >> (ATP &x) {
    		x = 0; int f = 1; char c;
    		for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
    		while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
    		if(f == -1) x = -x;
    		return *this;
    	}
    } io;
    using namespace std;
    template<typename ATP> inline ATP Max(ATP x, ATP y) {
    	return x > y ? x : y;
    }
    template<typename ATP> inline ATP Min(ATP x, ATP y) {
    	return x < y ? x : y;
    }
    template<typename ATP> inline ATP Abs(ATP x) {
    	return x < 0 ? -x : x;
    }
    #include <vector>
    #include <set>
    
    const int N = 1e5 + 7;
    const int base = 122777;
    
    char str[27];
    inline unsigned long long HashVal(char *str) {
    	int len = strlen(str + 1);
    	unsigned long long s = 1;
    	R(i,1,len)
    		s = s * base + str[i] - 'a';
    	return s;
    }
    struct Edge {
    	int nxt, pre;
    } e[N];
    int head[N], cntEdge;
    inline void add(int u, int v) {
    	e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
    }
    struct Ques {
    	int K, id;
    	Ques() {}
    	Ques(int _K, int _id) : K(_K), id(_id) {}
    };
    int ans[N];
    vector<Ques> q[N];
    set<int> tot[N];
    unsigned long long val[N];
    int son[N], dep[N], fa[N], siz[N];
    inline void DFS_First(int u, int father) {
    	dep[u] = dep[father] + 1, fa[u] = father, siz[u] = 1;
    	for(register int i = head[u]; i; i = e[i].nxt){
    		int v = e[i].pre;
    		DFS_First(v, u);
    		siz[u] += siz[v];
    		if(!son[u] || siz[v] > siz[son[u]]) son[u] = v;
    	}
    }
    bool big[N];
    inline void Clear(int u, int father) {
    	tot[dep[u]].clear();
    	for(register int i = head[u]; i; i = e[i].nxt){
    		int v = e[i].pre;
    		if(big[v]) continue; // if it' s a heavy son, ignore it
    		Clear(v, u);
    	}
    }
    inline void Calc(int u, int father) {
    	tot[dep[u]].insert(val[u]);
    	for(register int i = head[u]; i; i = e[i].nxt){
    		int v = e[i].pre;
    		if(big[v]) continue;
    		Calc(v, u);
    	}
    }
    int n;
    inline void DSU(int u, int father, int flag) { // flag = 0 : light, 1 : heavy
    	for(register int i = head[u]; i; i = e[i].nxt){ // every light son
    		int v = e[i].pre;
    		if(v == son[u]) continue;
    		DSU(v, u, 0);
    	}
    	if(son[u]) DSU(son[u], u, 1), big[son[u]] = true; // heavy son
    	Calc(u, father);
    	for(vector<Ques>::iterator it = q[u].begin(); it != q[u].end(); ++it){
    		int t = dep[u] + it -> K;
    		if(t <= n + 1) ans[it -> id] = tot[t].size();
    	}
    	if(son[u]) big[son[u]] = false; // finished getting the information from the heavy son
    	if(!flag) Clear(u, father); // clear the information from the light son
    }
    
    int main() {
    freopen("ancestor.in", "r", stdin);
    freopen("ancestor.out", "w", stdout);
    //FileOpen();
    //FileSave();
    	io >> n;
    	R(i,1,n){
    		scanf("%s", str + 1);
    		val[i] = HashVal(str);
    		int fa;
    		io >> fa;
    		add(fa, i);
    	}
    	int Q;
    	io >> Q;
    	R(i,1,Q){
    		int x, K;
    		io >> x >> K;
    		q[x].push_back(Ques(K, i));
    	}
    	DFS_First(0, 0); 
    	DSU(0, 0, 0);
    	
    	R(i,1,Q){
    		printf("%d
    ", ans[i]);
    	}
    	
    	return 0;
    }
    /*
    5 
    alice 0 
    alice 1 
    bob 2 
    cindy 1 
    bob 2 
    3 
    2 1 
    1 2 
    1 1 
    */
    

    例题

    咕咕咕~

    参考资料

  • 相关阅读:
    RDD弹性分布式数据集的基本操作
    spark-shell的Scala的一些方法详解
    浅谈架构
    关于MapReduce二次排序的一点解答
    mysql 和 hive 和分布式zookeeper和HBASE分布式安装教程
    2018暑假总结
    暑假总结07
    2018暑假总结06
    2018暑假总结05
    2018暑假总结04
  • 原文地址:https://www.cnblogs.com/bingoyes/p/11813261.html
Copyright © 2020-2023  润新知