• NOIP2009 T2 Hankson的趣味题


    传送门

    题目描述

    Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。

    今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数。现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:

    1. x 和 a0 的最大公约数是 a1;

    2. x 和 b0 的最小公倍数是 b1。

    Hankson 的“逆问题”就是求出满足条件的正整数 x。但稍加思索之后,他发现这样的x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮助他编程求解这个问题。

    输入输出格式

    输入格式:

    第一行为一个正整数 n,表示有 n 组输入数据。接下来的 n 行每行一组输入数据,为四个正整数 a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入数据保证 a0 能被 a1 整除,b1 能被 b0 整除。

    输出格式:

    输出文件 son.out 共 n 行。每组输入数据的输出结果占一行,为一个整数。

    对于每组数据:若不存在这样的 x,请输出 0;

    若存在这样的 x,请输出满足条件的 x 的个数;

    输入输出样例

    输入样例#1: 复制
    2 
    41 1 96 288 
    95 1 37 1776 
    输出样例#1: 复制
    6 
    2

    说明

    【说明】

    第一组输入数据,x 可以是 9、18、36、72、144、288,共有 6 个。

    第二组输入数据,x 可以是 48、1776,共有 2 个。

    【数据范围】

    对于 50%的数据,保证有 1≤a0,a1,b0,b1≤10000 且 n≤100。

    对于 100%的数据,保证有 1≤a0,a1,b0,b1≤2,000,000,000 且 n≤2000。

    很明显的,读题可得下面两个方程:

    gcd(x,a0) = a1;  ------------------------------#5

    lcm(x,b0) = b1;

    对于50%的数据来说,直接从a1枚举到b1然后判断就行。

    对于100%数据,显然这样暴力枚举是会超时的。

    由上面第二个方程可得:

    x0*b0/gcd(x0,b0) = b1;

    移项得:

    gcd(x0,b0) = x0*b0/b1;  --------------------------#6

    因为(x0*b0/b1)是x0,b0的最大公约数, 两边同时除以x0*bo/b1得:

    gcd(b1/b0,b1/x) = 1;   -----------------------------#1

    同理,对于第一个方程,两边除以一个a1得:

    gcd(x/a1,a0/a1) = 1;  ------------------------------#2

    由#1 ,#2两方程可以看出,x是b1的因子,a1是x的因子。

    所以我们只要枚举b1的因子(1-> sqrt(b1)),然后判定其是否满足#5与#6。

    下面贴代码,有问题留言。

    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    int n,a0,a1,b0,b1,ans;
    int gcd(int a,int b){
        return (b==0?a:gcd(b,a%b));
    }
    int main(){
        scanf("%d",&n);
        while(n--){
            ans = 0;
            scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
            int bq = sqrt(b1);
            for(int i = 1;i<=bq;i++){
                if(b1%i == 0){
                    if(gcd(i,a0) == a1 && gcd(i,b0)*b1 == i*b0) ++ans;
                    int j = b1 / i;       //枚举另一个因子 
                    if(j == i) continue;
                    if(gcd(j,a0) == a1 && gcd(j,b0)*b1 == j*b0) ++ans;
                }
            }
            printf("%d
    ",ans);
        }
    }
  • 相关阅读:
    struts2简介
    项目整合SpringDataRedis
    SpringDataRedis入门Demo
    包管理-rpm
    文件查找与压缩
    N042第一周
    Shell
    Linux下终端字体颜色设置方法
    文本处理工具作业
    正则表达式
  • 原文地址:https://www.cnblogs.com/bingdada/p/7735878.html
Copyright © 2020-2023  润新知