• hdu 5396 Expression(区间DP+组合数)


    题目链接:hdu 5396 Expression

    题目大意:
    给你一个n然后是n个数。 然后是n-1个操作符,操作符是插入在两个数字之间的。 由于你不同的运算顺序,会产生不同的结果。
    比如:
    1 + 1 * 2 有两种  (1+1)*2   或者  1+(1*2)
    1 *  2 * 3  也是两种即使结果是一样的  (1*2)*3  或者 1*(2*3)
    问这所有不同的组合加起来的和对 1e9+7取余是多少。
     
    这个其实就是区间DP了
    dp[i][j] 代表的是区间  i 到 j 的和
    枚举dp[i][j] 之间所有的子区间
    假如是乘法:
    t = dp[i][k] * dp[k+1][j];
    这个其实可以直接算出来的:
    假设我们dp[i][k] 里面所有的值是 (x1+x2+x3...xn) == dp[i][k]
    假设我们dp[k+1][j] 里面所有的值是 (y1+y2+y3...yn) == dp[k+1][j]
    dp[i][k] * dp[k+1][j] == (x1+x2+...xn) * (y1+y2+y3...yn) == x1*y1+x1y*y2......xn*yn 其实和所有不同结果相乘出来是一样的
     
    假如是加法或者减法:
    我们表示阶乘 i为A[i].
    t = dp[i][k]*A[j-k-1] + dp[k+1][j]*A[k-i];
    其实这里我们想一下。区间 dp[i][k] 需要加上多少次?
    我们需要加的次数就是另一半区间的所有组合数,另一半区间有多少种组合方式我们就要加上多少个。
    因为他们之间可以相互组成不同的种类。同理另一半也是。
     
    最后的时候我们要乘上一个组合数。
    假设组合数为C[i][j].
    为什么要乘组合数:
    因为 假如我们k 分割了两个运算式子   【 1+(2*3)  】 + 【 1+(3*4) 】
    虽然说我们左右两边的式子运算顺序已经确定了,但是我们总的运算顺序还是不确定的, 比如我们算完(2*3) 直接去算(3*4)也是不同的结果
    dp[i][j] = dp[i][j] + t*C[j-i-1][k-i]
    这个其实就是从总的运算符(j-i-1)(减去了第k个的运算符)个中选取(k-i)个进行运算。
    因为我们选取数达到 k-i的时候,另外我们还需要保持左右两边运算的相对顺序。
    就比如说:左边有a 个运算符, 右边有b个运算符。
    我们从 a+b个位置中选取 a位置个放a个的运算符。其余的只能放另一边的的运算符了。因为我们左右两边的相对顺序是不变的。
     1 #include<bits/stdc++.h>
     2 #define mst(a,b) memset(a,b,sizeof(a))
     3 #define F(i,a,b) for(int i=a;i<=b;++i)
     4 using namespace std;
     5 typedef long long ll;
     6 
     7 const int N=107,P=1e9+7;
     8 ll c[N][N],J[N],dp[N][N],t,n;
     9 char op[N];
    10 void Init()
    11 {
    12     for(int i=0;i<=100;i++)
    13     {
    14         c[i][0]=c[i][i]=1;
    15         for(int j=1;j<i;j++) c[i][j]=(c[i-1][j]+c[i-1][j-1])%P;
    16     }
    17     J[0]=1;
    18     F(i,1,100)J[i]=(J[i-1]*i)%P;
    19 }
    20 
    21 int main(){
    22     Init();
    23     while(cin>>n)
    24     {
    25         mst(dp,0);
    26         F(i,1,n)cin>>dp[i][i];
    27         scanf("%s",op+1);
    28         F(l,2,n)F(i,1,n-l+1)
    29         {
    30             int j=i+l-1;
    31             F(k,i,j-1)
    32             {
    33                 if(op[k]=='*')t=(dp[i][k]*dp[k+1][j])%P;
    34                 else if(op[k]=='+')t=(dp[i][k]*J[j-k-1]+dp[k+1][j]*J[k-i])%P;
    35                 else t=(dp[i][k]*J[j-k-1]-dp[k+1][j]*J[k-i])%P;
    36                 dp[i][j]=(dp[i][j]+t*c[j-i-1][k-i])%P;
    37             }
    38         }
    39         cout<<(dp[1][n]+P)%P<<endl;
    40     }
    41     return 0;
    42 }
    View Code
  • 相关阅读:
    javaScript 中的异步编程
    javaScript内存泄漏
    javaScript| 对象的拷贝
    javaScript 数组的拷贝
    javaScript 去除数组中的重复值
    解决js key中的时间间隔
    js未命题(杂记)
    js中斐波拉切数的三种写法;
    js闭包的七中形式
    Javascript学习日志(三):闭包
  • 原文地址:https://www.cnblogs.com/bin-gege/p/6434815.html
Copyright © 2020-2023  润新知