• python数据分析——pandas的拼接操作


    pandas的拼接操作

    pandas的拼接分为两种:

    • 级联:pd.concat, pd.append
    • 合并:pd.merge, pd.join

    1. 使用pd.concat()级联

    pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数:

    objs
    axis=0
    keys
    join='outer' / 'inner':表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配),而inner只会将匹配的项级联到一起,不匹配的不级联
    ignore_index=False

    1)匹配级联

    In [1]:
    import numpy as np
    import pandas as pd
    from pandas import Series,DataFrame
    
    In [2]:
    df1 = DataFrame(data=np.random.randint(0,100,size=(3,3)),index=['a','b','c'],columns=['A','B','C'])
    df2 = DataFrame(data=np.random.randint(0,100,size=(3,3)),index=['a','d','c'],columns=['A','d','C'])
    
    In [7]:
    pd.concat((df1,df1),axis=0,join='inner')
    
    Out[7]:
     ABC
    a 59 40 89
    b 71 5 76
    c 29 34 87
    a 59 40 89
    b 71 5 76
    c 29 34 87

    2) 不匹配级联

    不匹配指的是级联的维度的索引不一致。例如纵向级联时列索引不一致,横向级联时行索引不一致

    有2种连接方式:

    • 外连接:补NaN(默认模式)
    • 内连接:只连接匹配的项
    In [11]:
    pd.concat((df1,df2),axis=1,join='outer')
    Out[11]:
     ABCAdC
    a 59.0 40.0 89.0 50.0 26.0 45.0
    b 71.0 5.0 76.0 NaN NaN NaN
    c 29.0 34.0 87.0 31.0 82.0 35.0
    d NaN NaN NaN 23.0 95.0 94.0

    3) 使用df.append()函数添加

    由于在后面级联的使用非常普遍,因此有一个函数append专门用于在后面添加

    2. 使用pd.merge()合并

    merge与concat的区别在于,merge需要依据某一共同的列来进行合并

    使用pd.merge()合并时,会自动根据两者相同column名称的那一列,作为key来进行合并。

    注意每一列元素的顺序不要求一致

    参数:

    • how:out取并集 inner取交集
    • on:当有多列相同的时候,可以使用on来指定使用那一列进行合并,on的值为一个列表

    1) 一对一合并

    In [12]:
    df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
                    'group':['Accounting','Engineering','Engineering'],
                    })
    df1
    
    Out[12]:
     employeegroup
    0 Bob Accounting
    1 Jake Engineering
    2 Lisa Engineering
    In [13]:
    df2 = DataFrame({'employee':['Lisa','Bob','Jake'],
                    'hire_date':[2004,2008,2012],
                    })
    df2
    
    Out[13]:
     employeehire_date
    0 Lisa 2004
    1 Bob 2008
    2 Jake 2012
    In [14]:
    pd.merge(df1,df2,how='outer')
    
    Out[14]:
     employeegrouphire_date
    0 Bob Accounting 2008
    1 Jake Engineering 2012
    2 Lisa Engineering 2004

    2) 多对一合并

    In [15]:
    df3 = DataFrame({
        'employee':['Lisa','Jake'],
        'group':['Accounting','Engineering'],
        'hire_date':[2004,2016]})
    df3
    
    Out[15]:
     employeegrouphire_date
    0 Lisa Accounting 2004
    1 Jake Engineering 2016
    In [16]:
    df4 = DataFrame({'group':['Accounting','Engineering','Engineering'],
                           'supervisor':['Carly','Guido','Steve']
                    })
    df4
    
    Out[16]:
     groupsupervisor
    0 Accounting Carly
    1 Engineering Guido
    2 Engineering Steve
    In [17]:
    pd.merge(df3,df4)
    
    Out[17]:
     employeegrouphire_datesupervisor
    0 Lisa Accounting 2004 Carly
    1 Jake Engineering 2016 Guido
    2 Jake Engineering 2016 Steve

    3) 多对多合并

    In [18]:
    df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
                     'group':['Accounting','Engineering','Engineering']})
    df1
    
    Out[18]:
     employeegroup
    0 Bob Accounting
    1 Jake Engineering
    2 Lisa Engineering
    In [19]:
    df5 = DataFrame({'group':['Engineering','Engineering','HR'],
                    'supervisor':['Carly','Guido','Steve']
                    })
    df5
    
    Out[19]:
     groupsupervisor
    0 Engineering Carly
    1 Engineering Guido
    2 HR Steve
    In [21]:
    pd.merge(df1,df5,how='outer')
    
    Out[21]:
     employeegroupsupervisor
    0 Bob Accounting NaN
    1 Jake Engineering Carly
    2 Jake Engineering Guido
    3 Lisa Engineering Carly
    4 Lisa Engineering Guido
    5 NaN HR Steve
    • 加载excl数据:pd.read_excel('excl_path',sheetname=1)

    4) key的规范化

    • 当列冲突时,即有多个列名称相同时,需要使用on=来指定哪一个列作为key,配合suffixes指定冲突列名
    In [10]:
    df1 = DataFrame({'employee':['Jack',"Summer","Steve"],
                     'group':['Accounting','Finance','Marketing']})
    
    In [11]:
    df2 = DataFrame({'employee':['Jack','Bob',"Jake"],
                     'hire_date':[2003,2009,2012],
                    'group':['Accounting','sell','ceo']})
    
    In [22]:
    display(df1,df2)
    
     
     employeegroup
    0 Bob Accounting
    1 Jake Engineering
    2 Lisa Engineering
     
     employeehire_date
    0 Lisa 2004
    1 Bob 2008
    2 Jake 2012
    • 当两张表没有可进行连接的列时,可使用left_on和right_on手动指定merge中左右两边的哪一列列作为连接的列
    In [12]:
    df1 = DataFrame({'employee':['Bobs','Linda','Bill'],
                    'group':['Accounting','Product','Marketing'],
                   'hire_date':[1998,2017,2018]})
    
    In [13]:
    df5 = DataFrame({'name':['Lisa','Bobs','Bill'],
                    'hire_dates':[1998,2016,2007]})
    
    In [23]:
    display(df1,df5)
    
     
     employeegroup
    0 Bob Accounting
    1 Jake Engineering
    2 Lisa Engineering
     
     groupsupervisor
    0 Engineering Carly
    1 Engineering Guido
    2 HR Steve

    5) 内合并与外合并:out取并集 inner取交集

    • 内合并:只保留两者都有的key(默认模式)
    In [25]:
    df6 = DataFrame({'name':['Peter','Paul','Mary'],
                   'food':['fish','beans','bread']}
                   )
    df7 = DataFrame({'name':['Mary','Joseph'],
                    'drink':['wine','beer']})
    
    In [26]:
    display(df6,df7)
    
     
     namefood
    0 Peter fish
    1 Paul beans
    2 Mary bread
     
     namedrink
    0 Mary wine
    1 Joseph beer
    • 外合并 how='outer':补NaN
    In [27]:
    df6 = DataFrame({'name':['Peter','Paul','Mary'],
                   'food':['fish','beans','bread']}
                   )
    df7 = DataFrame({'name':['Mary','Joseph'],
                    'drink':['wine','beer']})
    display(df6,df7)
    pd.merge()
    
     
     namefood
    0 Peter fish
    1 Paul beans
    2 Mary bread
     
     namedrink
    0 Mary wine
    1 Joseph beer
  • 相关阅读:
    还原网站上被压缩的JS代码方便阅读
    让chrome浏览器变成在线编辑器
    awk之NF的妙用
    Xargs用法详解
    CU论坛常用知识点汇总
    awk中RS,ORS,FS,OFS区别与联系
    SHELL十三问[转载自CU论坛]
    关于shell中常见功能的实现方式总结
    shell实现ftp命令示例
    MySQL基础
  • 原文地址:https://www.cnblogs.com/bilx/p/11635867.html
Copyright © 2020-2023  润新知