• Flink Checkpoint & Savepoint


    Checkpoint是Flink实现容错机制最核心的功能,能够根据配置周期性地基于Stream中各个Operator的状态来生成Snapshot,从而将这些状态数据定期持久化存储下来,从而将这些状态数据定期持久化存储下来,当Flink程序一旦意外崩溃时,重新运行程序时可以有选择地从这些Snapshot进行恢复,从而修正因为故障带来的程序数据状态中断。

    1. Checkpoint指定触发生成时间间隔后,每当需要触发Checkpoint时,会向Flink程序运行时的多个分布式的Stream Source中插入一个Barrier标记
    2. 当一个Operator接收到一个Barrier时,它会暂停处理Steam中新接收到的数据记录
    3. 每个Stream中都会存在对应的Barrier,该Operator要等到所有的输入Stream中的Barrier都到达。当所有Stream中的Barrier都已经到达该Operator,这时所有的Barrier在时间上看来是同一个时刻点(表示已经对齐)
    4. 该Operator会将数据记录(Outgoing Records)发射(Emit)出去,作为下游Operator的输入
    5. 最后将Barrier对应Snapshot发射(Emit)出去作为此次Checkpoint的结果数据

    开启checkpoint

    val env = StreamExecutionEnvironment.getExecutionEnvironment
        env.setStateBackend(new FsStateBackend("hdfs://ip:8020/flink/flink-checkpoints"))
        val config = env.getCheckpointConfig
        config.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
        config.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
        config.setCheckpointInterval(60000)
    

    ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION,表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint处理。

    上面代码配置了执行Checkpointing的时间间隔为1分钟。

    保存多个checkpoint

    默认情况下,如果设置了Checkpoint选项,则Flink只保留最近成功生成的1个Checkpoint

    Flink可以支持保留多个Checkpoint,需要在Flink的配置文件conf/flink-conf.yaml中,添加如下配置,指定最多需要保存Checkpoint的个数:

    state.checkpoints.num-retained: 20
    
    

    如果希望会退到某个Checkpoint点,只需要指定对应的某个Checkpoint路径即可实现。

    从checkpoint 恢复

    如果Flink程序异常失败,或者最近一段时间内数据处理错误,我们可以将程序从某一个Checkpoint点,比如chk-860进行回放,执行如下命令

    bin/flink run -s hdfs://namenode01.td.com/flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-860/_metadata flink-app-jobs.jar
    
    • 所有的Checkpoint文件都在以Job ID为名称的目录里面

    • 当Job停掉后,重新从某个Checkpoint点(chk-860)进行恢复时,重新生成Job ID

    • Checkpoint编号会从该次运行基于的编号继续连续生成:chk-861、chk-862、chk-863

    checkpoint的建议

    • Checkpoint 间隔不要太短
      • 过短的间对于底层分布式文件系统而言,会带来很大的压力。
      • Flink 作业处理 record 与执行 checkpoint 存在互斥锁,过于频繁的checkpoint,可能会影响整体的性能。
    • 合理设置超时时间

    Savepoint会在Flink Job之外存储自包含(self-contained)结构的Checkpoint,它使用Flink的Checkpointing机制来创建一个非增量的Snapshot,里面包含Streaming程序的状态,并将Checkpoint的数据存储到外部存储系统中

    Flink程序中包含两种状态数据:

    • 用户定义的状态(User-defined State)是基于Flink的Transformation函数来创建或者修改得到的状态数据

    • 系统状态(System State),是指作为Operator计算一部分的数据Buffer等状态数据,比如在使用Window Function时,在Window内部缓存Streaming数据记录

    Flink提供了API来为程序中每个Operator设置ID,这样可以在后续更新/升级程序的时候,可以在Savepoint数据中基于Operator ID来与对应的状态信息进行匹配,从而实现恢复。

    设置Operator ID:

    DataStream<String> stream = env.
      // Stateful source (e.g. Kafka) with ID
      .addSource(new StatefulSource())
      .uid("source-id") // ID for the source operator
      .shuffle()
      // Stateful mapper with ID
      .map(new StatefulMapper())
      .uid("mapper-id") // ID for the mapper
      // Stateless printing sink
      .print(); // Auto-generated ID
    

    创建Savepoint

    创建一个Savepoint,需要指定对应Savepoint目录,有两种方式来指定

    1. 需要配置Savepoint的默认路径,需要在Flink的配置文件conf/flink-conf.yaml中,添加如下配置,设置Savepoint存储目录
    state.savepoints.dir: hdfs://namenode01.td.com/flink/flink-savepoints
    
    1. 手动执行savepoint命令的时候,指定Savepoint存储目录
    bin/flink savepoint :jobId [:targetDirectory]
    
    

    使用默认配置

    bin/flink savepoint 40dcc6d2ba90f13930abce295de8d038
    
    

    为正在运行的Flink Job指定一个目录存储Savepoint数据

    bin/flink savepoint 40dcc6d2ba90f13930abce295de8d038 hdfs://namenode01.td.com/tmp/flink/savepoints
    

    从Savepoint恢复

    bin/flink run -s :savepointPath [:runArgs]
    

    以上面保存的Savepoint为例,恢复Job运行

    bin/flink run -s hdfs://namenode01.td.com/tmp/flink/savepoints/savepoint-40dcc6-a90008f0f82f flink-app-jobs.jar
    

    会启动一个新的Flink Job,ID为cdbae3af1b7441839e7c03bab0d0eefd

    Savepoint 目录结构

    OoDSh9.png

    • 1bbc5是Flink Job ID字符串前6个字符,后面bd967f90709b是随机生成的字符串

    • _metadata文件包含了Savepoint的元数据信息

    • 其他文件内容都是序列化的状态信息

  • 相关阅读:
    521.最长特殊序列 I
    520.检查大写字母
    459.重复的子字符串
    Java 读取 .properties 文件的几种方式
    Idea 使用教程
    db2 with用法
    DB2 alter 新增/删除/修改列
    Bootstrap treegrid 实现树形表格结构
    Mysql 递归查询
    navicat for mysql 下载安装教程
  • 原文地址:https://www.cnblogs.com/bigdata1024/p/16284295.html
Copyright © 2020-2023  润新知