• 日志采集框架Flume以及Flume的安装部署(一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统)


     Flume支持众多的source和sink类型,详细手册可参考官方文档,更多source和sink组件

    http://flume.apache.org/FlumeUserGuide.html

    Flume官网入门指南:


     1:Flume的概述和介绍:

    (1):Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。
    (2):Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到HDFS、hbase、hive、kafka等众多外部存储系统中
    (3):一般的采集需求,通过对flume的简单配置即可实现
    (4):Flume针对特殊场景也具备良好的自定义扩展能力,因此,flume可以适用于大部分的日常数据采集场景

    2:Flume的运行机制:

    (1):Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成。

    (2):每一个agent相当于一个数据传递员,内部有三个组件:
        a):Source:采集源,用于跟数据源对接,以获取数据。主要作用是接受客户端发送的数据,并将数据发送到channel中,source和channel之间的关系是多对多的关系,不过一般情况下使用一个source对应多个channel。通过名称区分不同的source。flume常用的source有:Avro Source,Thrift Source,Exec Source,Kafka Source,Netcat Source。
        b):Sink:下沉地,采集数据的传送目的,用于往下一级agent传递数据或者往最终存储系统传递数据。主要作用就是定义数据写出方式,一般情况下sink从channel中获取数据,然后将数据写出到file,hdfs或者网络上。channel和sink之间的关系是一对多的关系,通过不同的名称来区分sink。Flume常用的sink有:hdfs sink,hive sink,file sink.hbase sink,avro sink,thrift sink,logger sink等等。
        c):Channel:angent内部的数据传输通道,用于从source将数据传递到sink。主要作用是提供一个数据传输通道,提供数据传输和数据存储等功能。source将数据放到channel中,sink从channel中拿数据。通过不同的命令来区分channel。Flume常用的channel有:memory channel,jdbc channel,kafka channel,file channel等等。

    注意:Source 到 Channel 到 Sink之间传递数据的形式是Event事件;Event事件是一个数据流单元。

     下面介绍单个Agent的fulme数据采集示意图:

     多级agent之间串联示意图:

     3:Flume的安装部署:

    (1)、Flume的安装非常简单,只需要解压即可,当然,前提是已有hadoop环境:
      a):上传安装包到数据源所在节点上,上传过程省略。
      b):然后解压  tar -zxvf apache-flume-1.6.0-bin.tar.gz;

        [root@master package]# tar -zxvf apache-flume-1.6.0-bin.tar.gz -C /home/hadoop/
      c):然后进入flume的目录,修改conf下的flume-env.sh,在里面配置JAVA_HOME;(由于conf目录下面是 flume-env.sh.template,所以我复制一个flume-env.sh,然后进行修改JAVA_HOME

        [root@master conf]# cp flume-env.sh.template flume-env.sh

        [root@master conf]# vim flume-env.sh

        然后将#注释去掉,加上自己的JAVA_HOME:export JAVA_HOME=/home/hadoop/jdk1.7.0_65
    (2)、根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义);
    (3)、指定采集方案配置文件,在相应的节点上启动flume agent;

    (4)、可以先用一个最简单的例子来测试一下程序环境是否正常(在flume的conf目录下新建一个文件);

    4:部署安装好,可以开始配置采集方案(这里是一个简单的采集方案配置的使用,从网络端口接收数据,然后下沉到logger), 然后需要配置一个文件,这个采集配置文件名称,netcat-logger.conf,采集配置文件netcat-logger.conf的内容如下所示:

     1 # example.conf: A single-node Flume configuration
     2 
     3 # Name the components on this agent
     4 #定义这个agent中各组件的名字,给那三个组件sources,sinks,channels取个名字,是一个逻辑代号:
     5 #a1是agent的代表。
     6 a1.sources = r1
     7 a1.sinks = k1
     8 a1.channels = c1
     9 
    10 # Describe/configure the source 描述和配置source组件:r1
    11 #类型, 从网络端口接收数据,在本机启动, 所以localhost, type=spoolDir采集目录源,目录里有就采
    12 #type是类型,是采集源的具体实现,这里是接受网络端口的,netcat可以从一个网络端口接受数据的。netcat在linux里的程序就是nc,可以学习一下。
    13 #bind绑定本机localhost。port端口号为44444。
    14 
    15 a1.sources.r1.type = netcat
    16 a1.sources.r1.bind = localhost
    17 a1.sources.r1.port = 44444
    18 
    19 # Describe the sink 描述和配置sink组件:k1
    20 #type,下沉类型,使用logger,将数据打印到屏幕上面。
    21 a1.sinks.k1.type = logger
    22 
    23 # Use a channel which buffers events in memory 描述和配置channel组件,此处使用是内存缓存的方式
    24 #type类型是内存memory。
    25 #下沉的时候是一批一批的, 下沉的时候是一个个eventChannel参数解释:
    26 #capacity:默认该通道中最大的可以存储的event数量,1000是代表1000条数据。
    27 #trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量。
    28 a1.channels.c1.type = memory
    29 a1.channels.c1.capacity = 1000
    30 a1.channels.c1.transactionCapacity = 100
    31 
    32 # Bind the source and sink to the channel 描述和配置source  channel   sink之间的连接关系
    33 #将sources和sinks绑定到channel上面。
    34 a1.sources.r1.channels = c1
    35 a1.sinks.k1.channel = c1

    下面在flume的conf目录下面编辑这个文件netcat-logger.conf:

    [root@master conf]# vim netcat-logger.conf

     启动agent去采集数据,然后可以进行启动了,启动命令如下所示:

    bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1  -Dflume.root.logger=INFO,console

      -c conf   指定flume自身的配置文件所在目录

      -f conf/netcat-logger.con  指定我们所描述的采集方案

      -n a1  指定我们这个agent的名字

    1 启动命令:
    2 #告诉flum启动一个agent。
    3 #--conf conf指定配置参数,。
    4 #conf/netcat-logger.conf指定采集方案的那个文件(自命名)。
    5 #--name a1:agent的名字,即agent的名字为a1。
    6 #-Dflume.root.logger=INFO,console给log4j传递的参数。
    7 $ bin/flume-ng agent --conf conf --conf-file conf/netcat-logger.conf --name a1 -Dflume.root.logger=INFO,console

     演示如下所示:

     启动的信息如下所示,可以启动到前台,也可以启动到后台:

     1 [root@master apache-flume-1.6.0-bin]# bin/flume-ng agent --conf conf --conf-file conf/netcat-logger.conf --name a1 -Dflume.root.logger=INFO,console
     2 Info: Sourcing environment configuration script /home/hadoop/apache-flume-1.6.0-bin/conf/flume-env.sh
     3 Info: Including Hadoop libraries found via (/home/hadoop/hadoop-2.4.1/bin/hadoop) for HDFS access
     4 Info: Excluding /home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/slf4j-api-1.7.5.jar from classpath
     5 Info: Excluding /home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar from classpath
     6 Info: Including Hive libraries found via () for Hive access
     7 + exec /home/hadoop/jdk1.7.0_65/bin/java -Xmx20m -Dflume.root.logger=INFO,console -cp '/home/hadoop/apache-flume-1.6.0-bin/conf:/home/hadoop/apache-flume-1.6.0-bin/lib/*:/home/hadoop/hadoop-2.4.1/etc/hadoop:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/activation-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/avro-1.7.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-beanutils-1.7.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-beanutils-core-1.8.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-cli-1.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-codec-1.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-collections-3.2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-configuration-1.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-digester-1.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-el-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-httpclient-3.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-lang-2.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-math3-3.1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-net-3.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/guava-11.0.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/hadoop-annotations-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/hadoop-auth-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/httpclient-4.2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/httpcore-4.2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-jaxrs-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-xc-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jasper-compiler-5.5.23.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jasper-runtime-5.5.23.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/java-xmlbuilder-0.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jaxb-api-2.2.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jaxb-impl-2.2.3-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jersey-json-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jets3t-0.9.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jettison-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jetty-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jsch-0.1.42.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jsp-api-2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jsr305-1.3.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/junit-4.8.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/mockito-all-1.8.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/paranamer-2.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/servlet-api-2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/snappy-java-1.0.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/stax-api-1.0-2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/xmlenc-0.52.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/xz-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/zookeeper-3.4.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/hadoop-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/hadoop-common-2.4.1-tests.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/hadoop-nfs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/jdiff:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/common/sources:/home/hadoop/hadoop-2.4.1/share/hadoop/common/templates:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-cli-1.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-codec-1.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-daemon-1.0.13.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-el-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-lang-2.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/guava-11.0.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jasper-runtime-5.5.23.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jetty-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jsp-api-2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jsr305-1.3.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/servlet-api-2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/xmlenc-0.52.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/hadoop-hdfs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/hadoop-hdfs-2.4.1-tests.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/hadoop-hdfs-nfs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/jdiff:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/sources:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/templates:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/webapps:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/activation-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/aopalliance-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-cli-1.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-codec-1.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-collections-3.2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-httpclient-3.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-lang-2.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/guava-11.0.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/guice-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/guice-servlet-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-jaxrs-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-xc-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/javax.inject-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jaxb-api-2.2.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jaxb-impl-2.2.3-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-client-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-guice-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-json-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jettison-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jetty-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jline-0.9.94.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jsr305-1.3.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/leveldbjni-all-1.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/servlet-api-2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/stax-api-1.0-2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/xz-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/zookeeper-3.4.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-api-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-applications-unmanaged-am-launcher-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-client-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-applicationhistoryservice-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-nodemanager-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-resourcemanager-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-tests-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-web-proxy-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/sources:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/test:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/aopalliance-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/avro-1.7.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/guice-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/guice-servlet-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/hadoop-annotations-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/hamcrest-core-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/javax.inject-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jersey-guice-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/junit-4.10.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/paranamer-2.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/snappy-java-1.0.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/xz-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-app-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-plugins-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.4.1-tests.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-shuffle-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib-examples:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/sources:/home/hadoop/hadoop-2.4.1/contrib/capacity-scheduler/*.jar:/lib/*' -Djava.library.path=:/home/hadoop/hadoop-2.4.1/lib/native org.apache.flume.node.Application --conf-file conf/netcat-logger.conf --name a1
     8 2017-12-12 19:59:37,108 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider.start(PollingPropertiesFileConfigurationProvider.java:61)] Configuration provider starting
     9 2017-12-12 19:59:37,130 (conf-file-poller-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider$FileWatcherRunnable.run(PollingPropertiesFileConfigurationProvider.java:133)] Reloading configuration file:conf/netcat-logger.conf
    10 2017-12-12 19:59:37,142 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:931)] Added sinks: k1 Agent: a1
    11 2017-12-12 19:59:37,143 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1017)] Processing:k1
    12 2017-12-12 19:59:37,143 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1017)] Processing:k1
    13 2017-12-12 19:59:37,157 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration.validateConfiguration(FlumeConfiguration.java:141)] Post-validation flume configuration contains configuration for agents: [a1]
    14 2017-12-12 19:59:37,158 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:145)] Creating channels
    15 2017-12-12 19:59:37,166 (conf-file-poller-0) [INFO - org.apache.flume.channel.DefaultChannelFactory.create(DefaultChannelFactory.java:42)] Creating instance of channel c1 type memory
    16 2017-12-12 19:59:37,172 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:200)] Created channel c1
    17 2017-12-12 19:59:37,174 (conf-file-poller-0) [INFO - org.apache.flume.source.DefaultSourceFactory.create(DefaultSourceFactory.java:41)] Creating instance of source r1, type netcat
    18 2017-12-12 19:59:37,189 (conf-file-poller-0) [INFO - org.apache.flume.sink.DefaultSinkFactory.create(DefaultSinkFactory.java:42)] Creating instance of sink: k1, type: logger
    19 2017-12-12 19:59:37,192 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.getConfiguration(AbstractConfigurationProvider.java:114)] Channel c1 connected to [r1, k1]
    20 2017-12-12 19:59:37,200 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:138)] Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.NetcatSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@1ce79b8 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} }
    21 2017-12-12 19:59:37,210 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:145)] Starting Channel c1
    22 2017-12-12 19:59:37,371 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.register(MonitoredCounterGroup.java:120)] Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.
    23 2017-12-12 19:59:37,372 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:96)] Component type: CHANNEL, name: c1 started
    24 2017-12-12 19:59:37,376 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:173)] Starting Sink k1
    25 2017-12-12 19:59:37,376 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:184)] Starting Source r1
    26 2017-12-12 19:59:37,377 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:150)] Source starting
    27 2017-12-12 19:59:37,513 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:164)] Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/127.0.0.1:44444]

     然后可以向这个端口发送数据,就打印出来了,因为这里输出是在console的:

     相当于产生数据的源:[root@master hadoop]# telnet localhost 44444

    [root@master hadoop]# telnet localhost 44444
    bash: telnet: command not found

    我的机器没有安装telnet ,所以先安装一下telnet ,如下所示

    第一步:检测telnet-server的rpm包是否安装 ???
      [root@localhost ~]# rpm -qa telnet-server
      若无输入内容,则表示没有安装。出于安全考虑telnet-server.rpm是默认没有安装的,而telnet的客户端是标配。即下面的软件是默认安装的。

    第二步:若未安装,则安装telnet-server:

       [root@localhost ~]#yum install telnet-server

    第三步:3、检测telnet的rpm包是否安装 ???
      [root@localhost ~]# rpm -qa telnet
      telnet-0.17-47.el6_3.1.x86_64

    第四步:若未安装,则安装telnet:

      [root@localhost ~]# yum install telnet

    第五步:重新启动xinetd守护进程???

      由于telnet服务也是由xinetd守护的,所以安装完telnet-server,要启动telnet服务就必须重新启动xinetd
      [root@locahost ~]#service xinetd restart

    完成以上步骤以后可以开始你的命令,如我的:

      [root@master hadoop]# telnet localhost 44444
      Trying ::1...
      telnet: connect to address ::1: Connection refused
      Trying 127.0.0.1...
      Connected to localhost.
      Escape character is '^]'.

    解决完上面的错误以后就可以开始测试telnet数据源发送和flume的接受

    测试,先要往agent采集监听的端口上发送数据,让agent有数据可采集随便在一个能跟agent节点联网的机器上:telnet localhost 44444

     

    然后可以看到flume已经接受到了数据:

    如何退出telnet呢???

      首先按ctrl+]退出到telnet > ,然后输入telnet> quit即可退出,记住,quit后面不要加;

     5:flume监视文件夹案例:

     1 监视文件夹
     2 
     3 
     4 第一步:
     5 首先 在flume的conf的目录下创建文件名称为:vim spool-logger.conf的文件。
     6 将下面的内容复制到这个文件里面。
     7 
     8 # Name the components on this agent
     9 a1.sources = r1
    10 a1.sinks = k1
    11 a1.channels = c1
    12 
    13 # Describe/configure the source
    14 #监听目录,spoolDir指定目录, fileHeader要不要给文件夹前坠名
    15 a1.sources.r1.type = spooldir
    16 a1.sources.r1.spoolDir = /home/hadoop/flumespool
    17 a1.sources.r1.fileHeader = true
    18 
    19 # Describe the sink
    20 a1.sinks.k1.type = logger
    21 
    22 # Use a channel which buffers events in memory
    23 a1.channels.c1.type = memory
    24 a1.channels.c1.capacity = 1000
    25 a1.channels.c1.transactionCapacity = 100
    26 
    27 # Bind the source and sink to the channel
    28 a1.sources.r1.channels = c1
    29 a1.sinks.k1.channel = c1
    30 
    31 第二步:根据a1.sources.r1.spoolDir = /home/hadoop/flumespool配置的文件路径,创建相应的目录。必须先创建对应的目录,不然报错。java.lang.IllegalStateException: Directory does not exist: /home/hadoop/flumespool
    32 [root@master conf]# mkdir  /home/hadoop/flumespool
    33 
    34 第三步:启动命令:  
    35 bin/flume-ng agent -c ./conf -f ./conf/spool-logger.conf -n a1 -Dflume.root.logger=INFO,console
    36[root@master apache-flume-1.6.0-bin]# bin/flume-ng agent --conf conf --conf-file conf/spool-logger.conf --name a1 -Dflume.root.logger=INFO,console
    37 第四步:测试: 
    38 往/home/hadoop/flumeSpool放文件(mv ././xxxFile /home/hadoop/flumeSpool),但是不要在里面生成文件。

    6:采集目录到HDFS案例:

    (1)采集需求:某服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去
    (2)根据需求,首先定义以下3大要素
      a):采集源,即source——监控文件目录 :  spooldir
      b):下沉目标,即sink——HDFS文件系统  :  hdfs sink
      c):source和sink之间的传递通道——channel,可用file channel 也可以用内存channel
    (3):
    Channel参数解释:

      capacity:默认该通道中最大的可以存储的event数量;

      trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量;

      keep-alive:event添加到通道中或者移出的允许时间;

    配置文件编写:

     1 #定义三大组件的名称
     2 agent1.sources = source1
     3 agent1.sinks = sink1
     4 agent1.channels = channel1
     5 
     6 # 配置source组件
     7 agent1.sources.source1.type = spooldir
     8 agent1.sources.source1.spoolDir = /home/hadoop/logs/
     9 agent1.sources.source1.fileHeader = false
    10 
    11 #配置拦截器
    12 agent1.sources.source1.interceptors = i1
    13 agent1.sources.source1.interceptors.i1.type = host
    14 agent1.sources.source1.interceptors.i1.hostHeader = hostname
    15 
    16 # 配置sink组件
    17 agent1.sinks.sink1.type = hdfs
    18 agent1.sinks.sink1.hdfs.path =hdfs://master:9000/weblog/flume-collection/%y-%m-%d/%H-%M
    19 agent1.sinks.sink1.hdfs.filePrefix = access_log
    20 agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
    21 agent1.sinks.sink1.hdfs.batchSize= 100
    22 agent1.sinks.sink1.hdfs.fileType = DataStream
    23 agent1.sinks.sink1.hdfs.writeFormat =Text
    24 agent1.sinks.sink1.hdfs.rollSize = 102400
    25 agent1.sinks.sink1.hdfs.rollCount = 1000000
    26 agent1.sinks.sink1.hdfs.rollInterval = 60
    27 #agent1.sinks.sink1.hdfs.round = true
    28 #agent1.sinks.sink1.hdfs.roundValue = 10
    29 #agent1.sinks.sink1.hdfs.roundUnit = minute
    30 agent1.sinks.sink1.hdfs.useLocalTimeStamp = true
    31 # Use a channel which buffers events in memory
    32 agent1.channels.channel1.type = memory
    33 agent1.channels.channel1.keep-alive = 120
    34 agent1.channels.channel1.capacity = 500000
    35 agent1.channels.channel1.transactionCapacity = 600
    36 
    37 # Bind the source and sink to the channel
    38 agent1.sources.source1.channels = channel1
    39 agent1.sinks.sink1.channel = channel1

     7:采集文件到HDFS案例:

    (1):采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs

    (2):根据需求,首先定义以下3大要素

      采集源,即source——监控文件内容更新 :  exec  ‘tail -F file’

      下沉目标,即sink——HDFS文件系统  :  hdfs sink

      Source和sink之间的传递通道——channel,可用file channel 也可以用 内存channel

    配置文件编写:

     1 agent1.sources = source1
     2 agent1.sinks = sink1
     3 agent1.channels = channel1
     4 
     5 # Describe/configure tail -F source1
     6 agent1.sources.source1.type = exec
     7 agent1.sources.source1.command = tail -F /home/hadoop/logs/access_log
     8 agent1.sources.source1.channels = channel1
     9 
    10 #configure host for source
    11 agent1.sources.source1.interceptors = i1
    12 agent1.sources.source1.interceptors.i1.type = host
    13 agent1.sources.source1.interceptors.i1.hostHeader = hostname
    14 
    15 # Describe sink1
    16 agent1.sinks.sink1.type = hdfs
    17 #a1.sinks.k1.channel = c1
    18 agent1.sinks.sink1.hdfs.path =hdfs://master:9000/weblog/flume-collection/%y-%m-%d/%H-%M
    19 agent1.sinks.sink1.hdfs.filePrefix = access_log
    20 agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
    21 agent1.sinks.sink1.hdfs.batchSize= 100
    22 agent1.sinks.sink1.hdfs.fileType = DataStream
    23 agent1.sinks.sink1.hdfs.writeFormat =Text
    24 agent1.sinks.sink1.hdfs.rollSize = 102400
    25 agent1.sinks.sink1.hdfs.rollCount = 1000000
    26 agent1.sinks.sink1.hdfs.rollInterval = 60
    27 agent1.sinks.sink1.hdfs.round = true
    28 agent1.sinks.sink1.hdfs.roundValue = 10
    29 agent1.sinks.sink1.hdfs.roundUnit = minute
    30 agent1.sinks.sink1.hdfs.useLocalTimeStamp = true
    31 
    32 # Use a channel which buffers events in memory
    33 agent1.channels.channel1.type = memory
    34 agent1.channels.channel1.keep-alive = 120
    35 agent1.channels.channel1.capacity = 500000
    36 agent1.channels.channel1.transactionCapacity = 600
    37 
    38 # Bind the source and sink to the channel
    39 agent1.sources.source1.channels = channel1
    40 agent1.sinks.sink1.channel = channel1

     待续......

  • 相关阅读:
    c++的输入流基础知识
    用英文加优先级来解读C的声明
    django 用imagefiled访问图片
    关于Django中的表单验证
    c#语言的一些复习
    IIS发布的网站用localhost可以访问,改成IP就无法访问的解决方案 .
    首次关于IIS配置遇到的一些问题
    常见dos操作
    vs2012中对于entity framework的使用
    几个知识点
  • 原文地址:https://www.cnblogs.com/biehongli/p/8031403.html
Copyright © 2020-2023  润新知