• 克隆选择算法-python实现


    CSAIndividual.py

     1 import numpy as np
     2 import ObjFunction
     3 
     4 
     5 class CSAIndividual:
     6 
     7     '''
     8     individual of clone selection algorithm
     9     '''
    10 
    11     def __init__(self,  vardim, bound):
    12         '''
    13         vardim: dimension of variables
    14         bound: boundaries of variables
    15         '''
    16         self.vardim = vardim
    17         self.bound = bound
    18         self.fitness = 0.
    19         self.trials = 0
    20 
    21     def generate(self):
    22         '''
    23         generate a random chromsome for clone selection algorithm
    24         '''
    25         len = self.vardim
    26         rnd = np.random.random(size=len)
    27         self.chrom = np.zeros(len)
    28         for i in xrange(0, len):
    29             self.chrom[i] = self.bound[0, i] + 
    30                 (self.bound[1, i] - self.bound[0, i]) * rnd[i]
    31 
    32     def calculateFitness(self):
    33         '''
    34         calculate the fitness of the chromsome
    35         '''
    36         self.fitness = ObjFunction.GrieFunc(
    37             self.vardim, self.chrom, self.bound)

    CSA.py

      1 import numpy as np
      2 from CSAIndividual import CSAIndividual
      3 import random
      4 import copy
      5 import matplotlib.pyplot as plt
      6 
      7 
      8 class CloneSelectionAlgorithm:
      9 
     10     '''
     11     the class for clone selection algorithm
     12     '''
     13 
     14     def __init__(self, sizepop, vardim, bound, MAXGEN, params):
     15         '''
     16         sizepop: population sizepop
     17         vardim: dimension of variables
     18         bound: boundaries of variables
     19         MAXGEN: termination condition
     20         params: algorithm required parameters, it is a list which is consisting of[beta, pm, alpha_max, alpha_min]
     21         '''
     22         self.sizepop = sizepop
     23         self.vardim = vardim
     24         self.bound = bound
     25         self.MAXGEN = MAXGEN
     26         self.params = params
     27         self.population = []
     28         self.fitness = np.zeros(self.sizepop)
     29         self.trace = np.zeros((self.MAXGEN, 2))
     30 
     31     def initialize(self):
     32         '''
     33         initialize the population of ba
     34         '''
     35         for i in xrange(0, self.sizepop):
     36             ind = CSAIndividual(self.vardim, self.bound)
     37             ind.generate()
     38             self.population.append(ind)
     39 
     40     def evaluation(self):
     41         '''
     42         evaluation the fitness of the population
     43         '''
     44         for i in xrange(0, self.sizepop):
     45             self.population[i].calculateFitness()
     46             self.fitness[i] = self.population[i].fitness
     47 
     48     def solve(self):
     49         '''
     50         the evolution process of the clone selection algorithm
     51         '''
     52         self.t = 0
     53         self.initialize()
     54         self.evaluation()
     55         bestIndex = np.argmax(self.fitness)
     56         self.best = copy.deepcopy(self.population[bestIndex])
     57         while self.t < self.MAXGEN:
     58             self.t += 1
     59             tmpPop = self.reproduction()
     60             tmpPop = self.mutation(tmpPop)
     61             self.selection(tmpPop)
     62             best = np.max(self.fitness)
     63             bestIndex = np.argmax(self.fitness)
     64             if best > self.best.fitness:
     65                 self.best = copy.deepcopy(self.population[bestIndex])
     66 
     67             self.avefitness = np.mean(self.fitness)
     68             self.trace[self.t - 1, 0] = 
     69                 (1 - self.best.fitness) / self.best.fitness
     70             self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness
     71             print("Generation %d: optimal function value is: %f; average function value is %f" % (
     72                 self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
     73         print("Optimal function value is: %f; " % self.trace[self.t - 1, 0])
     74         print "Optimal solution is:"
     75         print self.best.chrom
     76         self.printResult()
     77 
     78     def reproduction(self):
     79         '''
     80         reproduction
     81         '''
     82         tmpPop = []
     83         for i in xrange(0, self.sizepop):
     84             nc = int(self.params[1] * self.sizepop)
     85             for j in xrange(0, nc):
     86                 ind = copy.deepcopy(self.population[i])
     87                 tmpPop.append(ind)
     88         return tmpPop
     89 
     90     def mutation(self, tmpPop):
     91         '''
     92         hypermutation
     93         '''
     94         for i in xrange(0, self.sizepop):
     95             nc = int(self.params[1] * self.sizepop)
     96             for j in xrange(1, nc):
     97                 rnd = np.random.random(1)
     98                 if rnd < self.params[0]:
     99                     # alpha = self.params[
    100                     #     2] + self.t * (self.params[3] - self.params[2]) / self.MAXGEN
    101                     delta = self.params[2] + self.t * 
    102                         (self.params[3] - self.params[3]) / self.MAXGEN
    103                     tmpPop[i * nc + j].chrom += np.random.normal(0.0, delta, self.vardim)
    104                     # tmpPop[i * nc + j].chrom += alpha * np.random.random(
    105                     # self.vardim) * (self.best.chrom - tmpPop[i * nc +
    106                     # j].chrom)
    107                     for k in xrange(0, self.vardim):
    108                         if tmpPop[i * nc + j].chrom[k] < self.bound[0, k]:
    109                             tmpPop[i * nc + j].chrom[k] = self.bound[0, k]
    110                         if tmpPop[i * nc + j].chrom[k] > self.bound[1, k]:
    111                             tmpPop[i * nc + j].chrom[k] = self.bound[1, k]
    112                     tmpPop[i * nc + j].calculateFitness()
    113         return tmpPop
    114 
    115     def selection(self, tmpPop):
    116         '''
    117         re-selection
    118         '''
    119         for i in xrange(0, self.sizepop):
    120             nc = int(self.params[1] * self.sizepop)
    121             best = 0.0
    122             bestIndex = -1
    123             for j in xrange(0, nc):
    124                 if tmpPop[i * nc + j].fitness > best:
    125                     best = tmpPop[i * nc + j].fitness
    126                     bestIndex = i * nc + j
    127             if self.fitness[i] < best:
    128                 self.population[i] = copy.deepcopy(tmpPop[bestIndex])
    129                 self.fitness[i] = best
    130 
    131     def printResult(self):
    132         '''
    133         plot the result of clone selection algorithm
    134         '''
    135         x = np.arange(0, self.MAXGEN)
    136         y1 = self.trace[:, 0]
    137         y2 = self.trace[:, 1]
    138         plt.plot(x, y1, 'r', label='optimal value')
    139         plt.plot(x, y2, 'g', label='average value')
    140         plt.xlabel("Iteration")
    141         plt.ylabel("function value")
    142         plt.title("Clone selection algorithm for function optimization")
    143         plt.legend()
    144         plt.show()

     运行程序:

    1 if __name__ == "__main__":
    2 
    3     bound = np.tile([[-600], [600]], 25)
    4     csa = CSA(50, 25, bound, 500, [0.3, 0.4, 5, 0.1])
    5     csa.solve()

    ObjFunction见简单遗传算法-python实现

  • 相关阅读:
    内存
    jmeter设置全局变量
    tomcat(1)
    JVM(一)
    内存溢出
    消息中间件
    上下文切换(二)
    平均负载(二)
    requests模块
    Pycharm如何配置Git
  • 原文地址:https://www.cnblogs.com/biaoyu/p/4857928.html
Copyright © 2020-2023  润新知