• 简单遗传算法-python实现


    ObjFunction.py

     1 import math
     2 
     3 
     4 def GrieFunc(vardim, x, bound):
     5     """
     6     Griewangk function
     7     """
     8     s1 = 0.
     9     s2 = 1.
    10     for i in range(1, vardim + 1):
    11         s1 = s1 + x[i - 1] ** 2
    12         s2 = s2 * math.cos(x[i - 1] / math.sqrt(i))
    13     y = (1. / 4000.) * s1 - s2 + 1
    14     y = 1. / (1. + y)
    15     return y
    16 
    17 
    18 def RastFunc(vardim, x, bound):
    19     """
    20     Rastrigin function
    21     """
    22     s = 10 * 25
    23     for i in range(1, vardim + 1):
    24         s = s + x[i - 1] ** 2 - 10 * math.cos(2 * math.pi * x[i - 1])
    25     return s

    GAIndividual.py

     1 import numpy as np
     2 import ObjFunction
     3 
     4 
     5 class GAIndividual:
     6 
     7     '''
     8     individual of genetic algorithm
     9     '''
    10 
    11     def __init__(self,  vardim, bound):
    12         '''
    13         vardim: dimension of variables
    14         bound: boundaries of variables
    15         '''
    16         self.vardim = vardim
    17         self.bound = bound
    18         self.fitness = 0.
    19 
    20     def generate(self):
    21         '''
    22         generate a random chromsome for genetic algorithm
    23         '''
    24         len = self.vardim
    25         rnd = np.random.random(size=len)
    26         self.chrom = np.zeros(len)
    27         for i in xrange(0, len):
    28             self.chrom[i] = self.bound[0, i] + 
    29                 (self.bound[1, i] - self.bound[0, i]) * rnd[i]
    30 
    31     def calculateFitness(self):
    32         '''
    33         calculate the fitness of the chromsome
    34         '''
    35         self.fitness = ObjFunction.GrieFunc(
    36             self.vardim, self.chrom, self.bound)

    GeneticAlgorithm.py

      1 import numpy as np
      2 from GAIndividual import GAIndividual
      3 import random
      4 import copy
      5 import matplotlib.pyplot as plt
      6 
      7 
      8 class GeneticAlgorithm:
      9 
     10     '''
     11     The class for genetic algorithm
     12     '''
     13 
     14     def __init__(self, sizepop, vardim, bound, MAXGEN, params):
     15         '''
     16         sizepop: population sizepop
     17         vardim: dimension of variables
     18         bound: boundaries of variables
     19         MAXGEN: termination condition
     20         param: algorithm required parameters, it is a list which is consisting of crossover rate, mutation rate, alpha
     21         '''
     22         self.sizepop = sizepop
     23         self.MAXGEN = MAXGEN
     24         self.vardim = vardim
     25         self.bound = bound
     26         self.population = []
     27         self.fitness = np.zeros((self.sizepop, 1))
     28         self.trace = np.zeros((self.MAXGEN, 2))
     29         self.params = params
     30 
     31     def initialize(self):
     32         '''
     33         initialize the population
     34         '''
     35         for i in xrange(0, self.sizepop):
     36             ind = GAIndividual(self.vardim, self.bound)
     37             ind.generate()
     38             self.population.append(ind)
     39 
     40     def evaluate(self):
     41         '''
     42         evaluation of the population fitnesses
     43         '''
     44         for i in xrange(0, self.sizepop):
     45             self.population[i].calculateFitness()
     46             self.fitness[i] = self.population[i].fitness
     47 
     48     def solve(self):
     49         '''
     50         evolution process of genetic algorithm
     51         '''
     52         self.t = 0
     53         self.initialize()
     54         self.evaluate()
     55         best = np.max(self.fitness)
     56         bestIndex = np.argmax(self.fitness)
     57         self.best = copy.deepcopy(self.population[bestIndex])
     58         self.avefitness = np.mean(self.fitness)
     59         self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
     60         self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
     61         print("Generation %d: optimal function value is: %f; average function value is %f" % (
     62             self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
     63         while (self.t < self.MAXGEN - 1):
     64             self.t += 1
     65             self.selectionOperation()
     66             self.crossoverOperation()
     67             self.mutationOperation()
     68             self.evaluate()
     69             best = np.max(self.fitness)
     70             bestIndex = np.argmax(self.fitness)
     71             if best > self.best.fitness:
     72                 self.best = copy.deepcopy(self.population[bestIndex])
     73             self.avefitness = np.mean(self.fitness)
     74             self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
     75             self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
     76             print("Generation %d: optimal function value is: %f; average function value is %f" % (
     77                 self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
     78 
     79         print("Optimal function value is: %f; " %
     80               self.trace[self.t, 0])
     81         print "Optimal solution is:"
     82         print self.best.chrom
     83         self.printResult()
     84 
     85     def selectionOperation(self):
     86         '''
     87         selection operation for Genetic Algorithm
     88         '''
     89         newpop = []
     90         totalFitness = np.sum(self.fitness)
     91         accuFitness = np.zeros((self.sizepop, 1))
     92 
     93         sum1 = 0.
     94         for i in xrange(0, self.sizepop):
     95             accuFitness[i] = sum1 + self.fitness[i] / totalFitness
     96             sum1 = accuFitness[i]
     97 
     98         for i in xrange(0, self.sizepop):
     99             r = random.random()
    100             idx = 0
    101             for j in xrange(0, self.sizepop - 1):
    102                 if j == 0 and r < accuFitness[j]:
    103                     idx = 0
    104                     break
    105                 elif r >= accuFitness[j] and r < accuFitness[j + 1]:
    106                     idx = j + 1
    107                     break
    108             newpop.append(self.population[idx])
    109         self.population = newpop
    110 
    111     def crossoverOperation(self):
    112         '''
    113         crossover operation for genetic algorithm
    114         '''
    115         newpop = []
    116         for i in xrange(0, self.sizepop, 2):
    117             idx1 = random.randint(0, self.sizepop - 1)
    118             idx2 = random.randint(0, self.sizepop - 1)
    119             while idx2 == idx1:
    120                 idx2 = random.randint(0, self.sizepop - 1)
    121             newpop.append(copy.deepcopy(self.population[idx1]))
    122             newpop.append(copy.deepcopy(self.population[idx2]))
    123             r = random.random()
    124             if r < self.params[0]:
    125                 crossPos = random.randint(1, self.vardim - 1)
    126                 for j in xrange(crossPos, self.vardim):
    127                     newpop[i].chrom[j] = newpop[i].chrom[
    128                         j] * self.params[2] + (1 - self.params[2]) * newpop[i + 1].chrom[j]
    129                     newpop[i + 1].chrom[j] = newpop[i + 1].chrom[j] * self.params[2] + 
    130                         (1 - self.params[2]) * newpop[i].chrom[j]
    131         self.population = newpop
    132 
    133     def mutationOperation(self):
    134         '''
    135         mutation operation for genetic algorithm
    136         '''
    137         newpop = []
    138         for i in xrange(0, self.sizepop):
    139             newpop.append(copy.deepcopy(self.population[i]))
    140             r = random.random()
    141             if r < self.params[1]:
    142                 mutatePos = random.randint(0, self.vardim - 1)
    143                 theta = random.random()
    144                 if theta > 0.5:
    145                     newpop[i].chrom[mutatePos] = newpop[i].chrom[
    146                         mutatePos] - (newpop[i].chrom[mutatePos] - self.bound[0, mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
    147                 else:
    148                     newpop[i].chrom[mutatePos] = newpop[i].chrom[
    149                         mutatePos] + (self.bound[1, mutatePos] - newpop[i].chrom[mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
    150         self.population = newpop
    151 
    152     def printResult(self):
    153         '''
    154         plot the result of the genetic algorithm
    155         '''
    156         x = np.arange(0, self.MAXGEN)
    157         y1 = self.trace[:, 0]
    158         y2 = self.trace[:, 1]
    159         plt.plot(x, y1, 'r', label='optimal value')
    160         plt.plot(x, y2, 'g', label='average value')
    161         plt.xlabel("Iteration")
    162         plt.ylabel("function value")
    163         plt.title("Genetic algorithm for function optimization")
    164         plt.legend()
    165         plt.show()

     运行程序:

    1 if __name__ == "__main__":
    2 
    3     bound = np.tile([[-600], [600]], 25)
    4     ga = GA(60, 25, bound, 1000, [0.9, 0.1, 0.5])
    5     ga.solve()
  • 相关阅读:
    Maven
    2022/3/13 std
    搜索二维矩阵 II
    pip 操作
    《最短路径树》
    IntelliJ IDEA 2021.3.1和janetfilter.jar
    java.sql.SQLException: Access denied for user 'root'@'localhost' (using password: YES)
    Why You Should Use CrossEntropy Error Instead Of Classification Error Or Mean Squared Error For Neural Network Classifier Training
    top命令输出的缩写
    "SyntaxError: Unexpected end of JSON input", uniapp小程序URL传参包涵特殊字符
  • 原文地址:https://www.cnblogs.com/biaoyu/p/4857881.html
Copyright © 2020-2023  润新知