花了大约1周的时间,终于把MapReduce的5大阶段的源码学习结束掉了,收获不少,就算本人对Hadoop学习的一个里程碑式的纪念吧。今天花了一点点的时间,把MapReduce的最后一个阶段,输出OutputFormat给做了分析,这个过程跟InputFormat刚刚好是对着干的,二者极具对称性。为什么这么说呢,待我一一分析。
OutputFormat过程的作用就是定义数据key-value的输出格式,给你处理好后的数据,究竟以什么样的形式输出呢,才能让下次别人拿到这个文件的时候能准确的提取出里面的数据。这里,我们撇开这个话题,仅仅我知道的一些定义的数据格式的方法,比如在Redis中会有这样的设计:
[key-length][key][value-length][value][key-length][key][value-length][value]...
或者说不一定非要省空间,直接搞过分隔符
[key] [value]
[key] [value]
[key] [value]
.....
这样逐行读取,再以空格隔开,取出里面的键值对,这么做简单是简单,就是不紧凑,空间浪费得有点多。在MapReduce的OutputFormat的有种格式用的就是这种方式。
首先必须得了解OutputFormat里面到底有什么东西:
public interface OutputFormat<K, V> {
/**
* Get the {@link RecordWriter} for the given job.
* 获取输出记录键值记录
*
* @param ignored
* @param job configuration for the job whose output is being written.
* @param name the unique name for this part of the output.
* @param progress mechanism for reporting progress while writing to file.
* @return a {@link RecordWriter} to write the output for the job.
* @throws IOException
*/
RecordWriter<K, V> getRecordWriter(FileSystem ignored, JobConf job,
String name, Progressable progress)
throws IOException;
/**
* Check for validity of the output-specification for the job.
*
* <p>This is to validate the output specification for the job when it is
* a job is submitted. Typically checks that it does not already exist,
* throwing an exception when it already exists, so that output is not
* overwritten.</p>
* 作业运行之前进行的检测工作,例如配置的输出目录是否存在等
*
* @param ignored
* @param job job configuration.
* @throws IOException when output should not be attempted
*/
void checkOutputSpecs(FileSystem ignored, JobConf job) throws IOException;
}
很简单的2个方法,RecordWriter比较重要,后面的key-value的写入操作都是根据他来完成的。但是他是一个接口,在MapReduce中,我们用的最多的他的子类是FileOutputFormat:
/** A base class for {@link OutputFormat}. */
public abstract class FileOutputFormat<K, V> implements OutputFormat<K, V> {
他是一个抽象类,但是实现了接口中的第二个方法checkOutputSpecs()方法:
public void checkOutputSpecs(FileSystem ignored, JobConf job)
throws FileAlreadyExistsException,
InvalidJobConfException, IOException {
// Ensure that the output directory is set and not already there
Path outDir = getOutputPath(job);
if (outDir == null && job.getNumReduceTasks() != 0) {
throw new InvalidJobConfException("Output directory not set in JobConf.");
}
if (outDir != null) {
FileSystem fs = outDir.getFileSystem(job);
// normalize the output directory
outDir = fs.makeQualified(outDir);
setOutputPath(job, outDir);
// get delegation token for the outDir's file system
TokenCache.obtainTokensForNamenodes(job.getCredentials(),
new Path[] {outDir}, job);
// check its existence
if (fs.exists(outDir)) {
//如果输出目录以及存在,则抛异常
throw new FileAlreadyExistsException("Output directory " + outDir +
" already exists");
}
}
}
就是检查输出目录在不在的操作。在这个类里还出现了一个辅助类:
public static Path getTaskOutputPath(JobConf conf, String name)
throws IOException {
// ${mapred.out.dir}
Path outputPath = getOutputPath(conf);
if (outputPath == null) {
throw new IOException("Undefined job output-path");
}
//根据OutputCommitter获取输出路径
OutputCommitter committer = conf.getOutputCommitter();
Path workPath = outputPath;
TaskAttemptContext context = new TaskAttemptContext(conf,
TaskAttemptID.forName(conf.get("mapred.task.id")));
if (committer instanceof FileOutputCommitter) {
workPath = ((FileOutputCommitter)committer).getWorkPath(context,
outputPath);
}
// ${mapred.out.dir}/_temporary/_${taskid}/${name}
return new Path(workPath, name);
}
就是上面OutputCommiter,里面定义了很多和Task,job作业相关的方法。很多时候都会与OutputFormat合作的形式出现。他也有自己的子类实现FileOutputCommiter:
public class FileOutputCommitter extends OutputCommitter {
public static final Log LOG = LogFactory.getLog(
"org.apache.hadoop.mapred.FileOutputCommitter");
/**
* Temporary directory name
*/
public static final String TEMP_DIR_NAME = "_temporary";
public static final String SUCCEEDED_FILE_NAME = "_SUCCESS";
static final String SUCCESSFUL_JOB_OUTPUT_DIR_MARKER =
"mapreduce.fileoutputcommitter.marksuccessfuljobs";
public void setupJob(JobContext context) throws IOException {
JobConf conf = context.getJobConf();
Path outputPath = FileOutputFormat.getOutputPath(conf);
if (outputPath != null) {
Path tmpDir = new Path(outputPath, FileOutputCommitter.TEMP_DIR_NAME);
FileSystem fileSys = tmpDir.getFileSystem(conf);
if (!fileSys.mkdirs(tmpDir)) {
LOG.error("Mkdirs failed to create " + tmpDir.toString());
}
}
}
....
在Reduce阶段的后面的写阶段,FileOutputFormat是默认的输出的类型:
//获取输出的key,value
final RecordWriter<OUTKEY, OUTVALUE> out = new OldTrackingRecordWriter<OUTKEY, OUTVALUE>(
reduceOutputCounter, job, reporter, finalName);
OutputCollector<OUTKEY,OUTVALUE> collector =
new OutputCollector<OUTKEY,OUTVALUE>() {
public void collect(OUTKEY key, OUTVALUE value)
throws IOException {
//将处理后的key,value写入输出流中,最后写入HDFS作为最终结果
out.write(key, value);
// indicate that progress update needs to be sent
reporter.progress();
}
};
out就是直接发挥作用的类,但是是哪个Formtat的返回的呢,我们进入OldTrackingRecordWriter继续看:
public OldTrackingRecordWriter(
org.apache.hadoop.mapred.Counters.Counter outputRecordCounter,
JobConf job, TaskReporter reporter, String finalName)
throws IOException {
this.outputRecordCounter = outputRecordCounter;
//默认是FileOutputFormat文件输出方式
this.fileOutputByteCounter = reporter
.getCounter(FileOutputFormat.Counter.BYTES_WRITTEN);
Statistics matchedStats = null;
if (job.getOutputFormat() instanceof FileOutputFormat) {
matchedStats = getFsStatistics(FileOutputFormat.getOutputPath(job), job);
}
fsStats = matchedStats;
FileSystem fs = FileSystem.get(job);
long bytesOutPrev = getOutputBytes(fsStats);
//从配置中获取作业的输出方式
this.real = job.getOutputFormat().getRecordWriter(fs, job, finalName,
reporter);
long bytesOutCurr = getOutputBytes(fsStats);
fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev);
}
果然是我们所想的那样,FileOutputFormat,但是不要忘了它的getRecordWriter()是抽象方法,调用它还必须由它的子类来实现:
public abstract RecordWriter<K, V> getRecordWriter(FileSystem ignored,
JobConf job, String name,
Progressable progress)
throws IOException;
在这里我们举出其中在InputFormat举过的例子,TextOutputFormat,SequenceFileOutputFormat,与TextInputFormat,SequenceFileInputFormat对应。也就说说上面2个子类定义了2种截然不同的输出格式,也就返回了不一样的RecordWriter实现类.在TextOutputFormat中,他定义了一个叫LineRecordWriter的定义:
public RecordWriter<K, V> getRecordWriter(FileSystem ignored,
JobConf job,
String name,
Progressable progress)
throws IOException {
//从配置判断输出是否要压缩
boolean isCompressed = getCompressOutput(job);
//配置中获取加在key-value的分隔符
String keyValueSeparator = job.get("mapred.textoutputformat.separator",
" ");
//根据是否压缩获取相应的LineRecordWriter
if (!isCompressed) {
Path file = FileOutputFormat.getTaskOutputPath(job, name);
FileSystem fs = file.getFileSystem(job);
FSDataOutputStream fileOut = fs.create(file, progress);
return new LineRecordWriter<K, V>(fileOut, keyValueSeparator);
} else {
Class<? extends CompressionCodec> codecClass =
getOutputCompressorClass(job, GzipCodec.class);
// create the named codec
CompressionCodec codec = ReflectionUtils.newInstance(codecClass, job);
// build the filename including the extension
Path file =
FileOutputFormat.getTaskOutputPath(job,
name + codec.getDefaultExtension());
FileSystem fs = file.getFileSystem(job);
FSDataOutputStream fileOut = fs.create(file, progress);
return new LineRecordWriter<K, V>(new DataOutputStream
(codec.createOutputStream(fileOut)),
keyValueSeparator);
}
他以一个内部类的形式存在于TextOutputFormat。而在SequenceFileOutputFormat中,他的形式是怎样的呢:
public RecordWriter<K, V> getRecordWriter(
FileSystem ignored, JobConf job,
String name, Progressable progress)
throws IOException {
// get the path of the temporary output file
Path file = FileOutputFormat.getTaskOutputPath(job, name);
FileSystem fs = file.getFileSystem(job);
CompressionCodec codec = null;
CompressionType compressionType = CompressionType.NONE;
if (getCompressOutput(job)) {
// find the kind of compression to do
compressionType = getOutputCompressionType(job);
// find the right codec
Class<? extends CompressionCodec> codecClass = getOutputCompressorClass(job,
DefaultCodec.class);
codec = ReflectionUtils.newInstance(codecClass, job);
}
final SequenceFile.Writer out =
SequenceFile.createWriter(fs, job, file,
job.getOutputKeyClass(),
job.getOutputValueClass(),
compressionType,
codec,
progress);
return new RecordWriter<K, V>() {
public void write(K key, V value)
throws IOException {
out.append(key, value);
}
public void close(Reporter reporter) throws IOException { out.close();}
};
}
关键的操作都在于SequenceFile.Writer中。有不同的RecordWriter就会有不同的写入数据的方式,这里我们举LineRecordWriter的例子。看看他的写入方法:
//往输出流中写入key-value
public synchronized void write(K key, V value)
throws IOException {
//判断键值对是否为空
boolean nullKey = key == null || key instanceof NullWritable;
boolean nullValue = value == null || value instanceof NullWritable;
//如果k-v都为空,则操作失败,不写入直接返回
if (nullKey && nullValue) {
return;
}
//如果key不空,则写入key
if (!nullKey) {
writeObject(key);
}
//如果key,value都不为空,则中间写入k-v分隔符,在这里为 空格符
if (!(nullKey || nullValue)) {
out.write(keyValueSeparator);
}
//最后写入value
if (!nullValue) {
writeObject(value);
}
在这个方法里,我们就能看出他的存储形式就是我刚刚在上面讲的第二种存储方式。这个方法将会在下面的代码中被执行:
OutputCollector<OUTKEY,OUTVALUE> collector =
new OutputCollector<OUTKEY,OUTVALUE>() {
public void collect(OUTKEY key, OUTVALUE value)
throws IOException {
//将处理后的key,value写入输出流中,最后写入HDFS作为最终结果
out.write(key, value);
// indicate that progress update needs to be sent
reporter.progress();
}
};
过程可以这么理解:
collector.collect()------->out.write(key, value)------->LineRecordWriter.write(key, value)------->DataOutputStream.write(key, value).
DataOutputStream是内置于LineRecordWriter的作为里面的变量存在的。这样从Reduce末尾阶段到Output的过程也完全打通了。下面可以看看这上面涉及的完整的类目关系。
下一阶段的学习,可能或偏向于Task,Job阶段的过程分析,更加宏观过程上的一个分析。也可能会分析某个功能块的实现过程,比如Hadoop的IPC过程,据说用了很多JAVA NIO的东西。