• <每日一题>Day 9:POJ-3281.Dining(拆点 + 多源多汇+ 网络流 )


    Dining

    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 24945   Accepted: 10985

    Description

    Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

    Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

    Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

    Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

    Input

    Line 1: Three space-separated integers: NF, and D 
    Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

    Output

    Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

    Sample Input

    4 3 3
    2 2 1 2 3 1
    2 2 2 3 1 2
    2 2 1 3 1 2
    2 1 1 3 3

    Sample Output

    3

    Hint

    One way to satisfy three cows is: 
    Cow 1: no meal 
    Cow 2: Food #2, Drink #2 
    Cow 3: Food #1, Drink #1 
    Cow 4: Food #3, Drink #3 
    The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

    Source

      都在代码里了,干/drink.jpg

    /*
        POJ 3281 最大流 + 拆点
        源点 -> food -> 牛左 -> 牛右 -> Drink -> 汇点
        建图时注意将上面的所有边的容量设置为1,这样就可以保证一头牛
        只吃一种食物喝一种饮料,转化之后肯定就知道是最大流了
    
        拆点技巧:为了保证同一个东西满足两个条件,则将其拆分为两个
        公共边的点分别进行求解。
    
        嘤嘤嘤,为什么做完之后感觉这个题其实建图也是很好想的,就是拆个点,原谅自己太差
        唉,都是幻觉
    */
    
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <algorithm>
    #include <vector>
    using namespace std;
    
    const int maxn=1000+5, INF = 0x3f3f3f3f;
    struct Edge
    {
        Edge(){}
        Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow){}
        int from,to,cap,flow;
    };
    
    struct Dinic
    {
        int n,m,s,t;            //结点数,边数(包括反向弧),源点与汇点编号
        vector<Edge> edges;     //边表 edges[e]和edges[e^1]互为反向弧
        vector<int> G[maxn];    //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
        bool vis[maxn];         //BFS使用,标记一个节点是否被遍历过
        int d[maxn];            //从起点到i点的距离
        int cur[maxn];          //当前弧下标
    
        void init(int n,int s,int t)
        {
            this->n=n,this->s=s,this->t=t;
            for(int i=1;i<=n;i++) G[i].clear();
            edges.clear();
        }
    
        void AddEdge(int from,int to,int cap)
        {
            edges.push_back( Edge(from,to,cap,0) );
            edges.push_back( Edge(to,from,0,0) );
            m = edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
    
        bool BFS()
        {
            memset(vis,false,sizeof(vis));
            queue<int> Q;//用来保存节点编号的
            Q.push(s);
            d[s]=0;
            vis[s]=true;
            while(!Q.empty())
            {
                int x=Q.front(); Q.pop();
                for(int i=0; i<G[x].size(); i++)
                {
                    Edge& e=edges[G[x][i]];
                    if(!vis[e.to] && e.cap>e.flow)
                    {
                        vis[e.to]=true;
                        d[e.to] = d[x]+1;
                        Q.push(e.to);
                    }
                }
            }
            return vis[t];
        }
    
        int DFS(int x,int a)
        {
            if(x==t || a==0)return a;
            int flow=0,f;//flow用来记录从x到t的最小残量
            for(int& i=cur[x]; i<G[x].size(); i++)
            {
                Edge& e=edges[G[x][i]];
                if(d[x]+1==d[e.to] && (f=DFS( e.to,min(a,e.cap-e.flow) ) )>0 )
                {
                    e.flow +=f;
                    edges[G[x][i]^1].flow -=f;
                    flow += f;
                    a -= f;
                    if(a==0) break;
                }
            }
            return flow;
        }
    
        int Maxflow()
        {
            int flow=0;
            while(BFS())
            {
                memset(cur,0,sizeof(cur));
                flow += DFS(s,INF);
            }
            return flow;
        }
    }Dinic;
    
    int main() {
        int n, f, a, b, c, d;
        scanf("%d %d %d", &n, &f, &d);
        int s = n * 2 + f + d + 1, t = s + 1;
        Dinic.init(n, s, t);
        for(int i = 1; i <= f; i ++) {//n * 2 - 1 ~ n * 2 + f - 1存储从s -> 食物的边
            Dinic.AddEdge(s, n * 2 + i, 1);
        }
        for(int i = 1; i <= d; i ++) {//n * 2 + f ~ n * 2 + f + d - 1存储从饮料 -> t的边
            Dinic.AddEdge(n * 2 + f + i, t, 1);
        }
        for(int i = 1; i <= n; i ++) {
            Dinic.AddEdge(i ,n + i, 1);//牛拆点之后的建立的边1 ~ 2 * n
            scanf("%d %d", &a, &b);
            for(int j = 0; j < a; j ++) {
                scanf("%d", &c);
                Dinic.AddEdge(n * 2 + c, i, 1);//食物与牛建边
            }
            for(int j = 0; j < b; j ++) {
                scanf("%d", &c);
                Dinic.AddEdge(i + n, n * 2 + f + c, 1);//饮料与牛建边
            }
        }
        printf("%d
    ", Dinic.Maxflow());//模版最大流?
        return 0;
    }
  • 相关阅读:
    iOS类似QQ好友展开和合并列表的实现代码
    UIPickerView常见属性、常见方法(包括代理方法和数据源方法)的一些说明
    xcode 最近打开文件列表显示为空或不显示最近打开的项目或(no recent projects)解决办法
    KSImageNamed-Xcode插件在xcode 6.4/6.3或其他版本中不能使用解决方案
    喜欢的一句话
    progressdialog的setProgress没反应
    android gradle升级(手动|速度快些)
    详解java继承
    (转)详解Android中AsyncTask的使用
    android selector的item属性
  • 原文地址:https://www.cnblogs.com/bianjunting/p/10944931.html
Copyright © 2020-2023  润新知