• FFmpeg的HEVC解码器源码简单分析:解析器(Parser)部分


    =====================================================

    HEVC源码分析文章列表:

    【解码 -libavcodec HEVC 解码器】

    FFmpeg的HEVC解码器源码简单分析:概述

    FFmpeg的HEVC解码器源码简单分析:解析器(Parser)部分

    FFmpeg的HEVC解码器源码简单分析:解码器主干部分

    FFmpeg的HEVC解码器源码简单分析:CTU解码(CTU Decode)部分-PU

    FFmpeg的HEVC解码器源码简单分析:CTU解码(CTU Decode)部分-TU

    FFmpeg的HEVC解码器源码简单分析:环路滤波(LoopFilter)

    =====================================================


    上篇文章概述了FFmpeg的libavcodec中HEVC(H.265)解码器的结构;从这篇文章開始,具体研究HEVC解码器的源码。本文分析HEVC解码器中解析器(Parser)部分的源码。这部分的代码用于切割HEVC的NALU,而且解析SPS、PPS、SEI等信息。解析HEVC码流(相应AVCodecParser结构体中的函数)和解码HEVC码流(相应AVCodec结构体中的函数)的时候都会调用该部分的代码完毕相应的功能。


    函数调用关系图

    FFmpeg HEVC解析器(Parser)部分在整个HEVC解码器中的位置例如以下图所看到的。



    HEVC解析器(Parser)部分的源码的调用关系例如以下图所看到的。



    从图中能够看出。HEVC解析器调用了parse_nal_units()。HEVC解码器调用了decode_nal_units(),而上述两个函数都调用了以下几个解析函数:
    ff_hevc_decode_nal_vps():解析VPS。
    ff_hevc_decode_nal_sps():解析SPS。
    ff_hevc_decode_nal_pps():解析PPS。
    ff_hevc_decode_nal_sei():解析SEI。
    下文将会分别这几个函数。

    ff_hevc_decoder

    ff_hevc_decoder是HEVC解码器相应的AVCodec结构体。该结构体的定义位于libavcodechevc.c。例如以下所看到的。
    AVCodec ff_hevc_decoder = {
        .name                  = "hevc",
        .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
        .type                  = AVMEDIA_TYPE_VIDEO,
        .id                    = AV_CODEC_ID_HEVC,
        .priv_data_size        = sizeof(HEVCContext),
        .priv_class            = &hevc_decoder_class,
        .init                  = hevc_decode_init,
        .close                 = hevc_decode_free,
        .decode                = hevc_decode_frame,
        .flush                 = hevc_decode_flush,
        .update_thread_context = hevc_update_thread_context,
        .init_thread_copy      = hevc_init_thread_copy,
        .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
                                 CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
        .profiles              = NULL_IF_CONFIG_SMALL(profiles),
    };
    从源码中能够看出,HEVC解码器的解码函数是hevc_decode_frame()。因为本文主要分析HEVC解析器。所以不正确解码函数进行分析。在这里仅仅须要知道hevc_decode_frame()调用了decode_nal_units(),而decode_nal_units()终于调用了ff_hevc_decode_nal_sps()等解析函数就可以。



    ff_hevc_parser

    ff_hevc_parser是HEVC解析器相应的AVCodecParser结构体。该结构体的定义位于libavcodechevc_parser.c。例如以下所看到的。


    AVCodecParser ff_hevc_parser = {
        .codec_ids      = { AV_CODEC_ID_HEVC },
        .priv_data_size = sizeof(HEVCParseContext),
        .parser_init    = hevc_init,
        .parser_parse   = hevc_parse,
        .parser_close   = hevc_close,
        .split          = hevc_split,
    };
    从源码能够看出。HEVC解析器的初始化函数是hevc_init(),解析函数是hevc_parse(),关闭函数是hevc_close()。



    hevc_init()

    hevc_init()是HEVC解析器的初始化函数,该函数的定义例如以下所看到的。
    static int hevc_init(AVCodecParserContext *s)
    {
        HEVCContext  *h  = &((HEVCParseContext *)s->priv_data)->h;
        h->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
        h->skipped_bytes_pos_size = INT_MAX;
    
        return 0;
    }
    能够看出hevc_init()简单地给内部成员变量分配了内存。

    hevc_close()

    hevc_close()是HEVC解析器的关闭函数,该函数的定义例如以下所看到的。
    static void hevc_close(AVCodecParserContext *s)
    {
        int i;
        HEVCContext  *h  = &((HEVCParseContext *)s->priv_data)->h;
        ParseContext *pc = &((HEVCParseContext *)s->priv_data)->pc;
    
        av_freep(&h->skipped_bytes_pos);
        av_freep(&h->HEVClc);
        av_freep(&pc->buffer);
    
        for (i = 0; i < FF_ARRAY_ELEMS(h->vps_list); i++)
            av_buffer_unref(&h->vps_list[i]);
        for (i = 0; i < FF_ARRAY_ELEMS(h->sps_list); i++)
            av_buffer_unref(&h->sps_list[i]);
        for (i = 0; i < FF_ARRAY_ELEMS(h->pps_list); i++)
            av_buffer_unref(&h->pps_list[i]);
    
        av_buffer_unref(&h->current_sps);
        h->sps = NULL;
    
        for (i = 0; i < h->nals_allocated; i++)
            av_freep(&h->nals[i].rbsp_buffer);
        av_freep(&h->nals);
        h->nals_allocated = 0;
    }
    能够看出hevc_close()释放了内部成员变量的内存。

    hevc_parse()

    hevc_parse()是HEVC解析器中最关键的解析函数。该函数的定义例如以下所看到的。
    /*
     * 解析码流
     *
     * 凝视:雷霄骅
     * leixiaohua1020@126.com
     * http://blog.csdn.net/leixiaohua1020
     */
    static int hevc_parse(AVCodecParserContext *s,
                          AVCodecContext *avctx,
                          const uint8_t **poutbuf, int *poutbuf_size,
                          const uint8_t *buf, int buf_size)
    {
        int next;
        ParseContext *pc = &((HEVCParseContext *)s->priv_data)->pc;
        //PARSER_FLAG_COMPLETE_FRAMES为1的时候说明传入的就是完整的1帧数据
        //这时候不用再切割NALU
        //PARSER_FLAG_COMPLETE_FRAMES为0的时候说明传入的是随意一段数据
        //须要先分离出完整的NALU
        if (s->flags & PARSER_FLAG_COMPLETE_FRAMES) {
            next = buf_size;
        } else {
        	//切割NALU
        	//通过查找起始码0x000001的方法
            next = hevc_find_frame_end(s, buf, buf_size);
            //合并
            if (ff_combine_frame(pc, next, &buf, &buf_size) < 0) {
                *poutbuf      = NULL;
                *poutbuf_size = 0;
                return buf_size;
            }
        }
        //解析NALU内容(不解码)
        parse_nal_units(s, avctx, buf, buf_size);
    
        *poutbuf      = buf;
        *poutbuf_size = buf_size;
        return next;
    }
    

    从源码能够看出,hevc_parse()主要做了两步工作:
    (1)推断传入的flags 中是否包括PARSER_FLAG_COMPLETE_FRAMES。

    假设包括,则说明传入的是完整的一帧数据,不作不论什么处理;假设不包括。则说明传入的不是完整的一帧数据而是随意一段HEVC数据,则须要调用hevc_find_frame_end()通过查找“起始码”(0x00000001或者0x000001)的方法,分离出完整的一帧数据。
    (2)调用parse_nal_units()完毕了NALU的解析工作。

    以下分别看一下这两步中的两个函数。



    hevc_find_frame_end()

    hevc_find_frame_end()用于从HEVC码流中分离出完整的NALU。

    该函数的定义位于libavcodechevc_parser.c。例如以下所看到的。


    /**
     * Find the end of the current frame in the bitstream.
     * @return the position of the first byte of the next frame, or END_NOT_FOUND
     */
    //切割NALU
    static int hevc_find_frame_end(AVCodecParserContext *s, const uint8_t *buf,
                                   int buf_size)
    {
        int i;
        ParseContext *pc = &((HEVCParseContext *)s->priv_data)->pc;
        //一个一个字节进行处理
        for (i = 0; i < buf_size; i++) {
            int nut;
            //state64能够存8个字节
            //buf[i]存入state64
            pc->state64 = (pc->state64 << 8) | buf[i];
    
            //起始码定义#define START_CODE 0x000001
            //state64右移24bit之后,再对照是否为起始码0x000001
            if (((pc->state64 >> 3 * 8) & 0xFFFFFF) != START_CODE)
                continue;
            //找到起始码之后
            /*
             * 此时state64内容例如以下:
             *               |      Start Code    | NALU Header |
             * |------|------|------|------|------|------|------|------|
             *
             *               |  buf |  buf |  buf |  buf |  buf | buf  |
             *               | [t-5]| [t-4]| [t-3]| [t-2]| [t-1]|  [t] |
             *
             * Start Code:
             * 0x000001
             *
             * NALU Header:
             * forbidden_zero_bit: 1bit。取值0。
             * nal_unit_type: 6 bit。NALU类型。

    * nuh_layer_id: 6 bit。

    眼下取值为0(保留以后使用). * nuh_temporal_id_plus1: 3 bit。减1后为NALU时域层标识号TemporalID。

    * */ //state64右移16bit之后。state64最低字节为起始码后面的1Byte。即为NALU Header的前一个字节 //NALU Header的前一个字节中,第1bit为forbidden_zero_bit。取值为0; //2-7bit为nal_unit_type;第8bit为nuh_layer_id,取值为0。 //在这里state64右移(16+1)bit。然后相与0x3F(00111111) //即得到了nal_unit_type nut = (pc->state64 >> 2 * 8 + 1) & 0x3F; // Beginning of access unit if ((nut >= NAL_VPS && nut <= NAL_AUD) || nut == NAL_SEI_PREFIX || (nut >= 41 && nut <= 44) || (nut >= 48 && nut <= 55)) { if (pc->frame_start_found) { pc->frame_start_found = 0; //返回起始码開始位置 return i - 5; } } else if (nut <= NAL_RASL_R || (nut >= NAL_BLA_W_LP && nut <= NAL_CRA_NUT)) { int first_slice_segment_in_pic_flag = buf[i] >> 7; if (first_slice_segment_in_pic_flag) { if (!pc->frame_start_found) { pc->frame_start_found = 1; } else { // First slice of next frame found pc->frame_start_found = 0; //返回起始码開始位置 return i - 5; } } } } return END_NOT_FOUND; }


    从源码能够看出,hevc_find_frame_end()使用ParseContext中的state64暂时缓存读取的字节。state64是一个uint64_t类型的变量。一共能够存储8Byte的数据。

    函数体的for()循环一次读取一个字节。读取完毕后将该字节放入state64变量中;接着与起始码“0x000001”进行比較,假设不相等则继续读取,假设相等的话则提取NALU Header中nal_unit_type信息做相应处理后返回起始码開始的位置。



    parse_nal_units()

    parse_nal_units()用于解析一些NALU(VPS、SPS、PPS)的信息。该函数的定义位于libavcodechevc_parser.c,例如以下所看到的。
    /**
     * Parse NAL units of found picture and decode some basic information.
     *
     * @param s parser context.
     * @param avctx codec context.
     * @param buf buffer with field/frame data.
     * @param buf_size size of the buffer.
     *
     * 解析NALU内容(不解码)
     * 凝视:雷霄骅
     * leixiaohua1020@126.com
     * http://blog.csdn.net/leixiaohua1020
     *
     */
    static inline int parse_nal_units(AVCodecParserContext *s, AVCodecContext *avctx,
                          const uint8_t *buf, int buf_size)
    {
        HEVCContext   *h  = &((HEVCParseContext *)s->priv_data)->h;
        GetBitContext *gb = &h->HEVClc->gb;
        SliceHeader   *sh = &h->sh;
        const uint8_t *buf_end = buf + buf_size;
        int state = -1, i;
        HEVCNAL *nal;
    
        /* set some sane default values */
        s->pict_type         = AV_PICTURE_TYPE_I;
        s->key_frame         = 0;
        s->picture_structure = AV_PICTURE_STRUCTURE_UNKNOWN;
    
        h->avctx = avctx;
    
        if (!buf_size)
            return 0;
    
        if (h->nals_allocated < 1) {
            HEVCNAL *tmp = av_realloc_array(h->nals, 1, sizeof(*tmp));
            if (!tmp)
                return AVERROR(ENOMEM);
            h->nals = tmp;
            memset(h->nals, 0, sizeof(*tmp));
            h->nals_allocated = 1;
        }
    
        nal = &h->nals[0];
    
        for (;;) {
            int src_length, consumed;
            buf = avpriv_find_start_code(buf, buf_end, &state);
            if (--buf + 2 >= buf_end)
                break;
            src_length = buf_end - buf;
    
            h->nal_unit_type = (*buf >> 1) & 0x3f;
            h->temporal_id   = (*(buf + 1) & 0x07) - 1;
            if (h->nal_unit_type <= NAL_CRA_NUT) {
                // Do not walk the whole buffer just to decode slice segment header
                if (src_length > 20)
                    src_length = 20;
            }
            //相似于H.264解析器中的ff_h264_decode_nal()
            consumed = ff_hevc_extract_rbsp(h, buf, src_length, nal);
            if (consumed < 0)
                return consumed;
    
            init_get_bits8(gb, nal->data + 2, nal->size);
            /*
             * 几种NALU之间的关系
             *                           +--SS1
             *                           |
             *                 +--PPS1<--+
             *                 |         |
             *       +--SPS1<--+         +--SS2
             *       |         |
             * VPS<--+         +--PPS2
             *       |
             *       +--SPS2
             *
             */
            //解析不同种类的NALU
            switch (h->nal_unit_type) {
            case NAL_VPS:
            	//解析VPS
            	//VPS主要传输视频分级信息。有利于兼容可分级视频编码以及多视点视频编码
                ff_hevc_decode_nal_vps(h);
                break;
            case NAL_SPS:
            	//解析SPS
                ff_hevc_decode_nal_sps(h);
                break;
            case NAL_PPS:
            	//解析PPS
                ff_hevc_decode_nal_pps(h);
                break;
            case NAL_SEI_PREFIX:
            case NAL_SEI_SUFFIX:
            	//解析SEI
                ff_hevc_decode_nal_sei(h);
                break;
            case NAL_TRAIL_N:
            case NAL_TRAIL_R:
            case NAL_TSA_N:
            case NAL_TSA_R:
            case NAL_STSA_N:
            case NAL_STSA_R:
            case NAL_RADL_N:
            case NAL_RADL_R:
            case NAL_RASL_N:
            case NAL_RASL_R:
            case NAL_BLA_W_LP:
            case NAL_BLA_W_RADL:
            case NAL_BLA_N_LP:
            case NAL_IDR_W_RADL:
            case NAL_IDR_N_LP:
            case NAL_CRA_NUT:
    
            	//解析 SS Header
    
            	//依照解码顺序。当前SS是否为第1个SS(Slice Segment)
                sh->first_slice_in_pic_flag = get_bits1(gb);
                s->picture_structure = h->picture_struct;
                s->field_order = h->picture_struct;
    
                //IRAP, Intra Random Access Point, 随机介入点
                //包括 IDR, CRA, BLA
                if (IS_IRAP(h)) {
                	//设置关键帧
                    s->key_frame = 1;
                    sh->no_output_of_prior_pics_flag = get_bits1(gb);
                }
                //当前Slice引用的PPS的ID号
                sh->pps_id = get_ue_golomb(gb);
                if (sh->pps_id >= MAX_PPS_COUNT || !h->pps_list[sh->pps_id]) {
                    av_log(h->avctx, AV_LOG_ERROR, "PPS id out of range: %d
    ", sh->pps_id);
                    return AVERROR_INVALIDDATA;
                }
                h->pps = (HEVCPPS*)h->pps_list[sh->pps_id]->data;
    
                if (h->pps->sps_id >= MAX_SPS_COUNT || !h->sps_list[h->pps->sps_id]) {
                    av_log(h->avctx, AV_LOG_ERROR, "SPS id out of range: %d
    ", h->pps->sps_id);
                    return AVERROR_INVALIDDATA;
                }
                if (h->sps != (HEVCSPS*)h->sps_list[h->pps->sps_id]->data) {
                    h->sps = (HEVCSPS*)h->sps_list[h->pps->sps_id]->data;
                    h->vps = (HEVCVPS*)h->vps_list[h->sps->vps_id]->data;
                }
                //当前Slice不是第一个SS
                if (!sh->first_slice_in_pic_flag) {
                    int slice_address_length;
                    //当前SS是否依赖SS
                    if (h->pps->dependent_slice_segments_enabled_flag)
                        sh->dependent_slice_segment_flag = get_bits1(gb);
                    else
                        sh->dependent_slice_segment_flag = 0;
    
                    slice_address_length = av_ceil_log2_c(h->sps->ctb_width *
                                                          h->sps->ctb_height);
                    //当前SS中第一个CTU的地址
                    sh->slice_segment_addr = get_bits(gb, slice_address_length);
                    if (sh->slice_segment_addr >= h->sps->ctb_width * h->sps->ctb_height) {
                        av_log(h->avctx, AV_LOG_ERROR, "Invalid slice segment address: %u.
    ",
                               sh->slice_segment_addr);
                        return AVERROR_INVALIDDATA;
                    }
                } else
                    sh->dependent_slice_segment_flag = 0;//独立SS
    
                if (sh->dependent_slice_segment_flag)//依赖SS
                    break;
    
                for (i = 0; i < h->pps->num_extra_slice_header_bits; i++)
                    skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
    
                //slice type定义:
                //  0: B Slice
                //  1: P Slice
                //  2: I Slice
                sh->slice_type = get_ue_golomb(gb);//
                if (!(sh->slice_type == I_SLICE || sh->slice_type == P_SLICE ||
                      sh->slice_type == B_SLICE)) {
                    av_log(h->avctx, AV_LOG_ERROR, "Unknown slice type: %d.
    ",
                           sh->slice_type);
                    return AVERROR_INVALIDDATA;
                }
                s->pict_type = sh->slice_type == B_SLICE ? AV_PICTURE_TYPE_B :
                               sh->slice_type == P_SLICE ? AV_PICTURE_TYPE_P :
                                                           AV_PICTURE_TYPE_I;
    
                if (h->pps->output_flag_present_flag)
                    sh->pic_output_flag = get_bits1(gb);
    
                if (h->sps->separate_colour_plane_flag)
                    sh->colour_plane_id = get_bits(gb, 2);
    
                if (!IS_IDR(h)) {
                	//不是IDR,则计算POC
                    sh->pic_order_cnt_lsb = get_bits(gb, h->sps->log2_max_poc_lsb);
                    s->output_picture_number = h->poc = ff_hevc_compute_poc(h, sh->pic_order_cnt_lsb);
                } else
                    s->output_picture_number = h->poc = 0;
    
                if (h->temporal_id == 0 &&
                    h->nal_unit_type != NAL_TRAIL_N &&
                    h->nal_unit_type != NAL_TSA_N &&
                    h->nal_unit_type != NAL_STSA_N &&
                    h->nal_unit_type != NAL_RADL_N &&
                    h->nal_unit_type != NAL_RASL_N &&
                    h->nal_unit_type != NAL_RADL_R &&
                    h->nal_unit_type != NAL_RASL_R)
                    h->pocTid0 = h->poc;
    
                return 0; /* no need to evaluate the rest */
            }
            buf += consumed;
        }
        /* didn't find a picture! */
        av_log(h->avctx, AV_LOG_ERROR, "missing picture in access unit
    ");
        return -1;
    }
    

    从源码能够看出,parse_nal_units()依据nal_unit_type的不同。调用不同的解析函数进行处理。比如:
    a)解析VPS的时候调用ff_hevc_decode_nal_vps()
    b)解析SPS的时候调用ff_hevc_decode_nal_sps()
    c)解析PPS的时候调用ff_hevc_decode_nal_pps()
    d)解析SEI的时候调用ff_hevc_decode_nal_sei()
    e)解析SS Header的一部分信息。
    下文简单分析这几种NALU的解析函数。

    ff_hevc_decode_nal_vps()

    眼下还没有研究过VPS,所以没有分析该函数。


    ff_hevc_decode_nal_sps()

    ff_hevc_decode_nal_sps()用于解析HEVC码流中的SPS。该函数的定义位于libavcodechevc_ps.c,例如以下所看到的。
    //解析SPS
    int ff_hevc_decode_nal_sps(HEVCContext *s)
    {
        const AVPixFmtDescriptor *desc;
        GetBitContext *gb = &s->HEVClc->gb;
        int ret = 0;
        unsigned int sps_id = 0;
        int log2_diff_max_min_transform_block_size;
        int bit_depth_chroma, start, vui_present, sublayer_ordering_info;
        int i;
    
        HEVCSPS *sps;
        AVBufferRef *sps_buf = av_buffer_allocz(sizeof(*sps));
    
        if (!sps_buf)
            return AVERROR(ENOMEM);
        sps = (HEVCSPS*)sps_buf->data;
    
        av_log(s->avctx, AV_LOG_DEBUG, "Decoding SPS
    ");
    
        // Coded parameters
        // 当前引用的VPS的ID
        sps->vps_id = get_bits(gb, 4);
        if (sps->vps_id >= MAX_VPS_COUNT) {
            av_log(s->avctx, AV_LOG_ERROR, "VPS id out of range: %d
    ", sps->vps_id);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
    
        if (!s->vps_list[sps->vps_id]) {
            av_log(s->avctx, AV_LOG_ERROR, "VPS %d does not exist
    ",
                   sps->vps_id);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
        //时域子层的最大数目
        sps->max_sub_layers = get_bits(gb, 3) + 1;
        if (sps->max_sub_layers > MAX_SUB_LAYERS) {
            av_log(s->avctx, AV_LOG_ERROR, "sps_max_sub_layers out of range: %d
    ",
                   sps->max_sub_layers);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
    
        skip_bits1(gb); // temporal_id_nesting_flag
    
        if (parse_ptl(s, &sps->ptl, sps->max_sub_layers) < 0)
            goto err;
        //当前SPS的ID
        sps_id = get_ue_golomb_long(gb);
        if (sps_id >= MAX_SPS_COUNT) {
            av_log(s->avctx, AV_LOG_ERROR, "SPS id out of range: %d
    ", sps_id);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
        /*
    	 * chroma_format_idc色度取样格式
    	 * 0: Y
    	 * 1: YUV420P
    	 * 2: YUV422P
    	 * 3: YUV444P
    	 */
        sps->chroma_format_idc = get_ue_golomb_long(gb);
        if (!(sps->chroma_format_idc == 1 || sps->chroma_format_idc == 2 || sps->chroma_format_idc == 3)) {
            avpriv_report_missing_feature(s->avctx, "chroma_format_idc != {1, 2, 3}
    ");
            ret = AVERROR_PATCHWELCOME;
            goto err;
        }
        //YUV444的时候。标记是否对3个分量单独编码
        if (sps->chroma_format_idc == 3)
            sps->separate_colour_plane_flag = get_bits1(gb);
    
        if (sps->separate_colour_plane_flag)
            sps->chroma_format_idc = 0;
        //宽和高
        sps->width  = get_ue_golomb_long(gb);
        sps->height = get_ue_golomb_long(gb);
        if ((ret = av_image_check_size(sps->width,
                                       sps->height, 0, s->avctx)) < 0)
            goto err;
        //裁剪相关
        if (get_bits1(gb)) { // pic_conformance_flag
            //TODO: * 2 is only valid for 420
            sps->pic_conf_win.left_offset   = get_ue_golomb_long(gb) * 2;
            sps->pic_conf_win.right_offset  = get_ue_golomb_long(gb) * 2;
            sps->pic_conf_win.top_offset    = get_ue_golomb_long(gb) * 2;
            sps->pic_conf_win.bottom_offset = get_ue_golomb_long(gb) * 2;
    
            if (s->avctx->flags2 & CODEC_FLAG2_IGNORE_CROP) {
                av_log(s->avctx, AV_LOG_DEBUG,
                       "discarding sps conformance window, "
                       "original values are l:%u r:%u t:%u b:%u
    ",
                       sps->pic_conf_win.left_offset,
                       sps->pic_conf_win.right_offset,
                       sps->pic_conf_win.top_offset,
                       sps->pic_conf_win.bottom_offset);
    
                sps->pic_conf_win.left_offset   =
                sps->pic_conf_win.right_offset  =
                sps->pic_conf_win.top_offset    =
                sps->pic_conf_win.bottom_offset = 0;
            }
            sps->output_window = sps->pic_conf_win;
        }
        //亮度像素的颜色位深
        sps->bit_depth   = get_ue_golomb_long(gb) + 8;
        //色度像素的颜色位深
        bit_depth_chroma = get_ue_golomb_long(gb) + 8;
        if (bit_depth_chroma != sps->bit_depth) {
            av_log(s->avctx, AV_LOG_ERROR,
                   "Luma bit depth (%d) is different from chroma bit depth (%d), "
                   "this is unsupported.
    ",
                   sps->bit_depth, bit_depth_chroma);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
        //依据颜色位深和色度採样格式设定pix_fmt
        switch (sps->bit_depth) {
        case 8:
            if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P;
            if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P;
            if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P;
           break;
        case 9:
            if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P9;
            if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P9;
            if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P9;
            break;
        case 10:
            if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P10;
            if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P10;
            if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P10;
            break;
        case 12:
            if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P12;
            if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P12;
            if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P12;
            break;
        default:
            av_log(s->avctx, AV_LOG_ERROR,
                   "4:2:0, 4:2:2, 4:4:4 supports are currently specified for 8, 10 and 12 bits.
    ");
            ret = AVERROR_PATCHWELCOME;
            goto err;
        }
    
        desc = av_pix_fmt_desc_get(sps->pix_fmt);
        if (!desc) {
            ret = AVERROR(EINVAL);
            goto err;
        }
    
        sps->hshift[0] = sps->vshift[0] = 0;
        sps->hshift[2] = sps->hshift[1] = desc->log2_chroma_w;
        sps->vshift[2] = sps->vshift[1] = desc->log2_chroma_h;
    
        sps->pixel_shift = sps->bit_depth > 8;
    
        //用于计算POC
        sps->log2_max_poc_lsb = get_ue_golomb_long(gb) + 4;
        if (sps->log2_max_poc_lsb > 16) {
            av_log(s->avctx, AV_LOG_ERROR, "log2_max_pic_order_cnt_lsb_minus4 out range: %d
    ",
                   sps->log2_max_poc_lsb - 4);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
    
        sublayer_ordering_info = get_bits1(gb);
        start = sublayer_ordering_info ? 0 : sps->max_sub_layers - 1;
        for (i = start; i < sps->max_sub_layers; i++) {
            sps->temporal_layer[i].max_dec_pic_buffering = get_ue_golomb_long(gb) + 1;
            sps->temporal_layer[i].num_reorder_pics      = get_ue_golomb_long(gb);
            sps->temporal_layer[i].max_latency_increase  = get_ue_golomb_long(gb) - 1;
            if (sps->temporal_layer[i].max_dec_pic_buffering > MAX_DPB_SIZE) {
                av_log(s->avctx, AV_LOG_ERROR, "sps_max_dec_pic_buffering_minus1 out of range: %d
    ",
                       sps->temporal_layer[i].max_dec_pic_buffering - 1);
                ret = AVERROR_INVALIDDATA;
                goto err;
            }
            if (sps->temporal_layer[i].num_reorder_pics > sps->temporal_layer[i].max_dec_pic_buffering - 1) {
                av_log(s->avctx, AV_LOG_WARNING, "sps_max_num_reorder_pics out of range: %d
    ",
                       sps->temporal_layer[i].num_reorder_pics);
                if (s->avctx->err_recognition & AV_EF_EXPLODE ||
                    sps->temporal_layer[i].num_reorder_pics > MAX_DPB_SIZE - 1) {
                    ret = AVERROR_INVALIDDATA;
                    goto err;
                }
                sps->temporal_layer[i].max_dec_pic_buffering = sps->temporal_layer[i].num_reorder_pics + 1;
            }
        }
    
        if (!sublayer_ordering_info) {
            for (i = 0; i < start; i++) {
                sps->temporal_layer[i].max_dec_pic_buffering = sps->temporal_layer[start].max_dec_pic_buffering;
                sps->temporal_layer[i].num_reorder_pics      = sps->temporal_layer[start].num_reorder_pics;
                sps->temporal_layer[i].max_latency_increase  = sps->temporal_layer[start].max_latency_increase;
            }
        }
        //亮度编码块-最小尺寸
        sps->log2_min_cb_size                    = get_ue_golomb_long(gb) + 3;
        //亮度编码块-最大尺寸和最小尺寸插值
        sps->log2_diff_max_min_coding_block_size = get_ue_golomb_long(gb);
        //亮度变换块-最小尺寸
        sps->log2_min_tb_size                    = get_ue_golomb_long(gb) + 2;
        //亮度变换块-最大尺寸和最小尺寸插值
        log2_diff_max_min_transform_block_size   = get_ue_golomb_long(gb);
        sps->log2_max_trafo_size                 = log2_diff_max_min_transform_block_size +
                                                   sps->log2_min_tb_size;
    
        if (sps->log2_min_tb_size >= sps->log2_min_cb_size) {
            av_log(s->avctx, AV_LOG_ERROR, "Invalid value for log2_min_tb_size");
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
        //帧间预測变换块-最大划分深度
        sps->max_transform_hierarchy_depth_inter = get_ue_golomb_long(gb);
        //帧内预測变换块-最大划分深度
        sps->max_transform_hierarchy_depth_intra = get_ue_golomb_long(gb);
        //是否使用量化矩阵
        sps->scaling_list_enable_flag = get_bits1(gb);
        if (sps->scaling_list_enable_flag) {
            set_default_scaling_list_data(&sps->scaling_list);
    
            if (get_bits1(gb)) {
                ret = scaling_list_data(s, &sps->scaling_list, sps);
                if (ret < 0)
                    goto err;
            }
        }
        //是否使用非对称划分模式
        sps->amp_enabled_flag = get_bits1(gb);
        //是否在去块效应滤波过程中使用样点自适应补偿SAO
        sps->sao_enabled      = get_bits1(gb);
        //同意PCM编码
        sps->pcm_enabled_flag = get_bits1(gb);
        //有关PCM编码的參数
        if (sps->pcm_enabled_flag) {
            sps->pcm.bit_depth   = get_bits(gb, 4) + 1;
            sps->pcm.bit_depth_chroma = get_bits(gb, 4) + 1;
            sps->pcm.log2_min_pcm_cb_size = get_ue_golomb_long(gb) + 3;
            sps->pcm.log2_max_pcm_cb_size = sps->pcm.log2_min_pcm_cb_size +
                                            get_ue_golomb_long(gb);
            if (sps->pcm.bit_depth > sps->bit_depth) {
                av_log(s->avctx, AV_LOG_ERROR,
                       "PCM bit depth (%d) is greater than normal bit depth (%d)
    ",
                       sps->pcm.bit_depth, sps->bit_depth);
                ret = AVERROR_INVALIDDATA;
                goto err;
            }
    
            sps->pcm.loop_filter_disable_flag = get_bits1(gb);
        }
        //短期參考num_short_term_ref_pic_set
        sps->nb_st_rps = get_ue_golomb_long(gb);
        if (sps->nb_st_rps > MAX_SHORT_TERM_RPS_COUNT) {
            av_log(s->avctx, AV_LOG_ERROR, "Too many short term RPS: %d.
    ",
                   sps->nb_st_rps);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
        for (i = 0; i < sps->nb_st_rps; i++) {
            if ((ret = ff_hevc_decode_short_term_rps(s, &sps->st_rps[i],
                                                     sps, 0)) < 0)
                goto err;
        }
        //长期參考num_long_term_ref_pic_set
        sps->long_term_ref_pics_present_flag = get_bits1(gb);
        if (sps->long_term_ref_pics_present_flag) {
            sps->num_long_term_ref_pics_sps = get_ue_golomb_long(gb);
            if (sps->num_long_term_ref_pics_sps > 31U) {
                av_log(0, AV_LOG_ERROR, "num_long_term_ref_pics_sps %d is out of range.
    ",
                       sps->num_long_term_ref_pics_sps);
                goto err;
            }
            for (i = 0; i < sps->num_long_term_ref_pics_sps; i++) {
                sps->lt_ref_pic_poc_lsb_sps[i]       = get_bits(gb, sps->log2_max_poc_lsb);
                sps->used_by_curr_pic_lt_sps_flag[i] = get_bits1(gb);
            }
        }
        //是否使用时域MV预測
        sps->sps_temporal_mvp_enabled_flag          = get_bits1(gb);
        //滤波过程是否使用双线性插值
        sps->sps_strong_intra_smoothing_enable_flag = get_bits1(gb);
        sps->vui.sar = (AVRational){0, 1};
        vui_present = get_bits1(gb);
        if (vui_present)
            decode_vui(s, sps);
    
        if (get_bits1(gb)) { // sps_extension_flag
            int sps_extension_flag[1];
            for (i = 0; i < 1; i++)
                sps_extension_flag[i] = get_bits1(gb);
            skip_bits(gb, 7); //sps_extension_7bits = get_bits(gb, 7);
            if (sps_extension_flag[0]) {
                int extended_precision_processing_flag;
                int high_precision_offsets_enabled_flag;
                int cabac_bypass_alignment_enabled_flag;
    
                sps->transform_skip_rotation_enabled_flag = get_bits1(gb);
                sps->transform_skip_context_enabled_flag  = get_bits1(gb);
                sps->implicit_rdpcm_enabled_flag = get_bits1(gb);
    
                sps->explicit_rdpcm_enabled_flag = get_bits1(gb);
    
                extended_precision_processing_flag = get_bits1(gb);
                if (extended_precision_processing_flag)
                    av_log(s->avctx, AV_LOG_WARNING,
                       "extended_precision_processing_flag not yet implemented
    ");
    
                sps->intra_smoothing_disabled_flag       = get_bits1(gb);
                high_precision_offsets_enabled_flag  = get_bits1(gb);
                if (high_precision_offsets_enabled_flag)
                    av_log(s->avctx, AV_LOG_WARNING,
                       "high_precision_offsets_enabled_flag not yet implemented
    ");
    
                sps->persistent_rice_adaptation_enabled_flag = get_bits1(gb);
    
                cabac_bypass_alignment_enabled_flag  = get_bits1(gb);
                if (cabac_bypass_alignment_enabled_flag)
                    av_log(s->avctx, AV_LOG_WARNING,
                       "cabac_bypass_alignment_enabled_flag not yet implemented
    ");
            }
        }
        if (s->apply_defdispwin) {
            sps->output_window.left_offset   += sps->vui.def_disp_win.left_offset;
            sps->output_window.right_offset  += sps->vui.def_disp_win.right_offset;
            sps->output_window.top_offset    += sps->vui.def_disp_win.top_offset;
            sps->output_window.bottom_offset += sps->vui.def_disp_win.bottom_offset;
        }
        if (sps->output_window.left_offset & (0x1F >> (sps->pixel_shift)) &&
            !(s->avctx->flags & CODEC_FLAG_UNALIGNED)) {
            sps->output_window.left_offset &= ~(0x1F >> (sps->pixel_shift));
            av_log(s->avctx, AV_LOG_WARNING, "Reducing left output window to %d "
                   "chroma samples to preserve alignment.
    ",
                   sps->output_window.left_offset);
        }
        sps->output_width  = sps->width -
                             (sps->output_window.left_offset + sps->output_window.right_offset);
        sps->output_height = sps->height -
                             (sps->output_window.top_offset + sps->output_window.bottom_offset);
        if (sps->output_width <= 0 || sps->output_height <= 0) {
            av_log(s->avctx, AV_LOG_WARNING, "Invalid visible frame dimensions: %dx%d.
    ",
                   sps->output_width, sps->output_height);
            if (s->avctx->err_recognition & AV_EF_EXPLODE) {
                ret = AVERROR_INVALIDDATA;
                goto err;
            }
            av_log(s->avctx, AV_LOG_WARNING,
                   "Displaying the whole video surface.
    ");
            memset(&sps->pic_conf_win, 0, sizeof(sps->pic_conf_win));
            memset(&sps->output_window, 0, sizeof(sps->output_window));
            sps->output_width               = sps->width;
            sps->output_height              = sps->height;
        }
    
        // Inferred parameters
        // 推算出来的參数
        sps->log2_ctb_size = sps->log2_min_cb_size +
                             sps->log2_diff_max_min_coding_block_size;
        sps->log2_min_pu_size = sps->log2_min_cb_size - 1;
    
        sps->ctb_width  = (sps->width  + (1 << sps->log2_ctb_size) - 1) >> sps->log2_ctb_size;
        sps->ctb_height = (sps->height + (1 << sps->log2_ctb_size) - 1) >> sps->log2_ctb_size;
        sps->ctb_size   = sps->ctb_width * sps->ctb_height;
    
        sps->min_cb_width  = sps->width  >> sps->log2_min_cb_size;
        sps->min_cb_height = sps->height >> sps->log2_min_cb_size;
        sps->min_tb_width  = sps->width  >> sps->log2_min_tb_size;
        sps->min_tb_height = sps->height >> sps->log2_min_tb_size;
        sps->min_pu_width  = sps->width  >> sps->log2_min_pu_size;
        sps->min_pu_height = sps->height >> sps->log2_min_pu_size;
        sps->tb_mask       = (1 << (sps->log2_ctb_size - sps->log2_min_tb_size)) - 1;
    
        sps->qp_bd_offset = 6 * (sps->bit_depth - 8);
    
        if (sps->width  & ((1 << sps->log2_min_cb_size) - 1) ||
            sps->height & ((1 << sps->log2_min_cb_size) - 1)) {
            av_log(s->avctx, AV_LOG_ERROR, "Invalid coded frame dimensions.
    ");
            goto err;
        }
    
        if (sps->log2_ctb_size > MAX_LOG2_CTB_SIZE) {
            av_log(s->avctx, AV_LOG_ERROR, "CTB size out of range: 2^%d
    ", sps->log2_ctb_size);
            goto err;
        }
        if (sps->max_transform_hierarchy_depth_inter > sps->log2_ctb_size - sps->log2_min_tb_size) {
            av_log(s->avctx, AV_LOG_ERROR, "max_transform_hierarchy_depth_inter out of range: %d
    ",
                   sps->max_transform_hierarchy_depth_inter);
            goto err;
        }
        if (sps->max_transform_hierarchy_depth_intra > sps->log2_ctb_size - sps->log2_min_tb_size) {
            av_log(s->avctx, AV_LOG_ERROR, "max_transform_hierarchy_depth_intra out of range: %d
    ",
                   sps->max_transform_hierarchy_depth_intra);
            goto err;
        }
        if (sps->log2_max_trafo_size > FFMIN(sps->log2_ctb_size, 5)) {
            av_log(s->avctx, AV_LOG_ERROR,
                   "max transform block size out of range: %d
    ",
                   sps->log2_max_trafo_size);
            goto err;
        }
    
        if (get_bits_left(gb) < 0) {
            av_log(s->avctx, AV_LOG_ERROR,
                   "Overread SPS by %d bits
    ", -get_bits_left(gb));
            goto err;
        }
    
        if (s->avctx->debug & FF_DEBUG_BITSTREAM) {
            av_log(s->avctx, AV_LOG_DEBUG,
                   "Parsed SPS: id %d; coded wxh: %dx%d; "
                   "cropped wxh: %dx%d; pix_fmt: %s.
    ",
                   sps_id, sps->width, sps->height,
                   sps->output_width, sps->output_height,
                   av_get_pix_fmt_name(sps->pix_fmt));
        }
    
        /* check if this is a repeat of an already parsed SPS, then keep the
         * original one.
         * otherwise drop all PPSes that depend on it */
        if (s->sps_list[sps_id] &&
            !memcmp(s->sps_list[sps_id]->data, sps_buf->data, sps_buf->size)) {
            av_buffer_unref(&sps_buf);
        } else {
            for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
                if (s->pps_list[i] && ((HEVCPPS*)s->pps_list[i]->data)->sps_id == sps_id)
                    av_buffer_unref(&s->pps_list[i]);
            }
            if (s->sps_list[sps_id] && s->sps == (HEVCSPS*)s->sps_list[sps_id]->data) {
                av_buffer_unref(&s->current_sps);
                s->current_sps = av_buffer_ref(s->sps_list[sps_id]);
                if (!s->current_sps)
                    s->sps = NULL;
            }
            av_buffer_unref(&s->sps_list[sps_id]);
            s->sps_list[sps_id] = sps_buf;
        }
    
        return 0;
    
    err:
        av_buffer_unref(&sps_buf);
        return ret;
    }
    

    解析SPS源码并非非常有“技术含量”。仅仅要參考ITU-T的《HEVC标准》就能够理解了。不再做过多具体的分析。

    ff_hevc_decode_nal_pps()

    ff_hevc_decode_nal_pps()用于解析HEVC码流中的PPS。该函数的定义位于libavcodechevc_ps.c。例如以下所看到的。


    //解析PPS
    int ff_hevc_decode_nal_pps(HEVCContext *s)
    {
        GetBitContext *gb = &s->HEVClc->gb;
        HEVCSPS      *sps = NULL;
        int pic_area_in_ctbs;
        int log2_diff_ctb_min_tb_size;
        int i, j, x, y, ctb_addr_rs, tile_id;
        int ret = 0;
        unsigned int pps_id = 0;
    
        AVBufferRef *pps_buf;
        HEVCPPS *pps = av_mallocz(sizeof(*pps));
    
        if (!pps)
            return AVERROR(ENOMEM);
    
        pps_buf = av_buffer_create((uint8_t *)pps, sizeof(*pps),
                                   hevc_pps_free, NULL, 0);
        if (!pps_buf) {
            av_freep(&pps);
            return AVERROR(ENOMEM);
        }
    
        av_log(s->avctx, AV_LOG_DEBUG, "Decoding PPS
    ");
    
        // Default values
        // 默认值
        pps->loop_filter_across_tiles_enabled_flag = 1;
        pps->num_tile_columns                      = 1;
        pps->num_tile_rows                         = 1;
        pps->uniform_spacing_flag                  = 1;
        pps->disable_dbf                           = 0;
        pps->beta_offset                           = 0;
        pps->tc_offset                             = 0;
        pps->log2_max_transform_skip_block_size    = 2;
    
        // Coded parameters
        //当前PPS的ID
        pps_id = get_ue_golomb_long(gb);
        if (pps_id >= MAX_PPS_COUNT) {
            av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d
    ", pps_id);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
        //引用的SPS的ID
        pps->sps_id = get_ue_golomb_long(gb);
        if (pps->sps_id >= MAX_SPS_COUNT) {
            av_log(s->avctx, AV_LOG_ERROR, "SPS id out of range: %d
    ", pps->sps_id);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
        if (!s->sps_list[pps->sps_id]) {
            av_log(s->avctx, AV_LOG_ERROR, "SPS %u does not exist.
    ", pps->sps_id);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
        sps = (HEVCSPS *)s->sps_list[pps->sps_id]->data;
        //推断当前Slice是否包括依赖片
        pps->dependent_slice_segments_enabled_flag = get_bits1(gb);
        pps->output_flag_present_flag              = get_bits1(gb);
        pps->num_extra_slice_header_bits           = get_bits(gb, 3);
    
        pps->sign_data_hiding_flag = get_bits1(gb);
        //在CABAC中用何种方式确定上下文变量的初始值
        pps->cabac_init_present_flag = get_bits1(gb);
        //list0中參考图像数目的默认最大值
        pps->num_ref_idx_l0_default_active = get_ue_golomb_long(gb) + 1;
        //list1中參考图像数目的默认最大值
        pps->num_ref_idx_l1_default_active = get_ue_golomb_long(gb) + 1;
        //亮度分量QP的初始值
        pps->pic_init_qp_minus26 = get_se_golomb(gb);
    
        pps->constrained_intra_pred_flag = get_bits1(gb);
        pps->transform_skip_enabled_flag = get_bits1(gb);
    
        pps->cu_qp_delta_enabled_flag = get_bits1(gb);
        pps->diff_cu_qp_delta_depth   = 0;
        if (pps->cu_qp_delta_enabled_flag)
            pps->diff_cu_qp_delta_depth = get_ue_golomb_long(gb);
    
        if (pps->diff_cu_qp_delta_depth < 0 ||
            pps->diff_cu_qp_delta_depth > sps->log2_diff_max_min_coding_block_size) {
            av_log(s->avctx, AV_LOG_ERROR, "diff_cu_qp_delta_depth %d is invalid
    ",
                   pps->diff_cu_qp_delta_depth);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
    
        pps->cb_qp_offset = get_se_golomb(gb);
        if (pps->cb_qp_offset < -12 || pps->cb_qp_offset > 12) {
            av_log(s->avctx, AV_LOG_ERROR, "pps_cb_qp_offset out of range: %d
    ",
                   pps->cb_qp_offset);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
        pps->cr_qp_offset = get_se_golomb(gb);
        if (pps->cr_qp_offset < -12 || pps->cr_qp_offset > 12) {
            av_log(s->avctx, AV_LOG_ERROR, "pps_cr_qp_offset out of range: %d
    ",
                   pps->cr_qp_offset);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
        pps->pic_slice_level_chroma_qp_offsets_present_flag = get_bits1(gb);
        //P Slice是否使用加权预測
        pps->weighted_pred_flag   = get_bits1(gb);
        //B Slice是否使用加权预測
        pps->weighted_bipred_flag = get_bits1(gb);
    
        pps->transquant_bypass_enable_flag    = get_bits1(gb);
        //是否使用tile
        pps->tiles_enabled_flag               = get_bits1(gb);
        pps->entropy_coding_sync_enabled_flag = get_bits1(gb);
    
        if (pps->tiles_enabled_flag) {
        	//Tile的列数
            pps->num_tile_columns = get_ue_golomb_long(gb) + 1;
            //Tile的行数
            pps->num_tile_rows    = get_ue_golomb_long(gb) + 1;
            if (pps->num_tile_columns == 0 ||
                pps->num_tile_columns >= sps->width) {
                av_log(s->avctx, AV_LOG_ERROR, "num_tile_columns_minus1 out of range: %d
    ",
                       pps->num_tile_columns - 1);
                ret = AVERROR_INVALIDDATA;
                goto err;
            }
            if (pps->num_tile_rows == 0 ||
                pps->num_tile_rows >= sps->height) {
                av_log(s->avctx, AV_LOG_ERROR, "num_tile_rows_minus1 out of range: %d
    ",
                       pps->num_tile_rows - 1);
                ret = AVERROR_INVALIDDATA;
                goto err;
            }
    
            pps->column_width = av_malloc_array(pps->num_tile_columns, sizeof(*pps->column_width));
            pps->row_height   = av_malloc_array(pps->num_tile_rows,    sizeof(*pps->row_height));
            if (!pps->column_width || !pps->row_height) {
                ret = AVERROR(ENOMEM);
                goto err;
            }
    
            pps->uniform_spacing_flag = get_bits1(gb);
            if (!pps->uniform_spacing_flag) {
                uint64_t sum = 0;
                //每一个Tile的宽度和高度
                for (i = 0; i < pps->num_tile_columns - 1; i++) {
                    pps->column_width[i] = get_ue_golomb_long(gb) + 1;
                    sum                 += pps->column_width[i];
                }
                if (sum >= sps->ctb_width) {
                    av_log(s->avctx, AV_LOG_ERROR, "Invalid tile widths.
    ");
                    ret = AVERROR_INVALIDDATA;
                    goto err;
                }
                pps->column_width[pps->num_tile_columns - 1] = sps->ctb_width - sum;
    
                sum = 0;
                for (i = 0; i < pps->num_tile_rows - 1; i++) {
                    pps->row_height[i] = get_ue_golomb_long(gb) + 1;
                    sum               += pps->row_height[i];
                }
                if (sum >= sps->ctb_height) {
                    av_log(s->avctx, AV_LOG_ERROR, "Invalid tile heights.
    ");
                    ret = AVERROR_INVALIDDATA;
                    goto err;
                }
                pps->row_height[pps->num_tile_rows - 1] = sps->ctb_height - sum;
            }
            pps->loop_filter_across_tiles_enabled_flag = get_bits1(gb);
        }
    
        pps->seq_loop_filter_across_slices_enabled_flag = get_bits1(gb);
        //是否存在去方块滤波的控制信息
        pps->deblocking_filter_control_present_flag = get_bits1(gb);
        if (pps->deblocking_filter_control_present_flag) {
            pps->deblocking_filter_override_enabled_flag = get_bits1(gb);
            //是否使用去方块滤波
            pps->disable_dbf                             = get_bits1(gb);
            if (!pps->disable_dbf) {
                pps->beta_offset = get_se_golomb(gb) * 2;
                pps->tc_offset = get_se_golomb(gb) * 2;
                if (pps->beta_offset/2 < -6 || pps->beta_offset/2 > 6) {
                    av_log(s->avctx, AV_LOG_ERROR, "pps_beta_offset_div2 out of range: %d
    ",
                           pps->beta_offset/2);
                    ret = AVERROR_INVALIDDATA;
                    goto err;
                }
                if (pps->tc_offset/2 < -6 || pps->tc_offset/2 > 6) {
                    av_log(s->avctx, AV_LOG_ERROR, "pps_tc_offset_div2 out of range: %d
    ",
                           pps->tc_offset/2);
                    ret = AVERROR_INVALIDDATA;
                    goto err;
                }
            }
        }
    
        pps->scaling_list_data_present_flag = get_bits1(gb);
        if (pps->scaling_list_data_present_flag) {
            set_default_scaling_list_data(&pps->scaling_list);
            ret = scaling_list_data(s, &pps->scaling_list, sps);
            if (ret < 0)
                goto err;
        }
        pps->lists_modification_present_flag = get_bits1(gb);
        pps->log2_parallel_merge_level       = get_ue_golomb_long(gb) + 2;
        if (pps->log2_parallel_merge_level > sps->log2_ctb_size) {
            av_log(s->avctx, AV_LOG_ERROR, "log2_parallel_merge_level_minus2 out of range: %d
    ",
                   pps->log2_parallel_merge_level - 2);
            ret = AVERROR_INVALIDDATA;
            goto err;
        }
    
        pps->slice_header_extension_present_flag = get_bits1(gb);
    
        if (get_bits1(gb)) { // pps_extension_present_flag
            int pps_range_extensions_flag = get_bits1(gb);
            /* int pps_extension_7bits = */ get_bits(gb, 7);
            if (sps->ptl.general_ptl.profile_idc == FF_PROFILE_HEVC_REXT && pps_range_extensions_flag) {
                if ((ret = pps_range_extensions(s, pps, sps)) < 0)
                    goto err;
            }
        }
    
        // Inferred parameters
        pps->col_bd   = av_malloc_array(pps->num_tile_columns + 1, sizeof(*pps->col_bd));
        pps->row_bd   = av_malloc_array(pps->num_tile_rows + 1,    sizeof(*pps->row_bd));
        pps->col_idxX = av_malloc_array(sps->ctb_width,    sizeof(*pps->col_idxX));
        if (!pps->col_bd || !pps->row_bd || !pps->col_idxX) {
            ret = AVERROR(ENOMEM);
            goto err;
        }
    
        if (pps->uniform_spacing_flag) {
            if (!pps->column_width) {
                pps->column_width = av_malloc_array(pps->num_tile_columns, sizeof(*pps->column_width));
                pps->row_height   = av_malloc_array(pps->num_tile_rows,    sizeof(*pps->row_height));
            }
            if (!pps->column_width || !pps->row_height) {
                ret = AVERROR(ENOMEM);
                goto err;
            }
    
            for (i = 0; i < pps->num_tile_columns; i++) {
                pps->column_width[i] = ((i + 1) * sps->ctb_width) / pps->num_tile_columns -
                                       (i * sps->ctb_width) / pps->num_tile_columns;
            }
    
            for (i = 0; i < pps->num_tile_rows; i++) {
                pps->row_height[i] = ((i + 1) * sps->ctb_height) / pps->num_tile_rows -
                                     (i * sps->ctb_height) / pps->num_tile_rows;
            }
        }
    
        pps->col_bd[0] = 0;
        for (i = 0; i < pps->num_tile_columns; i++)
            pps->col_bd[i + 1] = pps->col_bd[i] + pps->column_width[i];
    
        pps->row_bd[0] = 0;
        for (i = 0; i < pps->num_tile_rows; i++)
            pps->row_bd[i + 1] = pps->row_bd[i] + pps->row_height[i];
    
        for (i = 0, j = 0; i < sps->ctb_width; i++) {
            if (i > pps->col_bd[j])
                j++;
            pps->col_idxX[i] = j;
        }
    
        /**
         * 6.5
         */
        pic_area_in_ctbs     = sps->ctb_width    * sps->ctb_height;
    
        pps->ctb_addr_rs_to_ts = av_malloc_array(pic_area_in_ctbs,    sizeof(*pps->ctb_addr_rs_to_ts));
        pps->ctb_addr_ts_to_rs = av_malloc_array(pic_area_in_ctbs,    sizeof(*pps->ctb_addr_ts_to_rs));
        pps->tile_id           = av_malloc_array(pic_area_in_ctbs,    sizeof(*pps->tile_id));
        pps->min_tb_addr_zs_tab = av_malloc_array((sps->tb_mask+2) * (sps->tb_mask+2), sizeof(*pps->min_tb_addr_zs_tab));
        if (!pps->ctb_addr_rs_to_ts || !pps->ctb_addr_ts_to_rs ||
            !pps->tile_id || !pps->min_tb_addr_zs_tab) {
            ret = AVERROR(ENOMEM);
            goto err;
        }
    
        for (ctb_addr_rs = 0; ctb_addr_rs < pic_area_in_ctbs; ctb_addr_rs++) {
            int tb_x   = ctb_addr_rs % sps->ctb_width;
            int tb_y   = ctb_addr_rs / sps->ctb_width;
            int tile_x = 0;
            int tile_y = 0;
            int val    = 0;
    
            for (i = 0; i < pps->num_tile_columns; i++) {
                if (tb_x < pps->col_bd[i + 1]) {
                    tile_x = i;
                    break;
                }
            }
    
            for (i = 0; i < pps->num_tile_rows; i++) {
                if (tb_y < pps->row_bd[i + 1]) {
                    tile_y = i;
                    break;
                }
            }
    
            for (i = 0; i < tile_x; i++)
                val += pps->row_height[tile_y] * pps->column_width[i];
            for (i = 0; i < tile_y; i++)
                val += sps->ctb_width * pps->row_height[i];
    
            val += (tb_y - pps->row_bd[tile_y]) * pps->column_width[tile_x] +
                   tb_x - pps->col_bd[tile_x];
    
            pps->ctb_addr_rs_to_ts[ctb_addr_rs] = val;
            pps->ctb_addr_ts_to_rs[val]         = ctb_addr_rs;
        }
    
        for (j = 0, tile_id = 0; j < pps->num_tile_rows; j++)
            for (i = 0; i < pps->num_tile_columns; i++, tile_id++)
                for (y = pps->row_bd[j]; y < pps->row_bd[j + 1]; y++)
                    for (x = pps->col_bd[i]; x < pps->col_bd[i + 1]; x++)
                        pps->tile_id[pps->ctb_addr_rs_to_ts[y * sps->ctb_width + x]] = tile_id;
    
        pps->tile_pos_rs = av_malloc_array(tile_id, sizeof(*pps->tile_pos_rs));
        if (!pps->tile_pos_rs) {
            ret = AVERROR(ENOMEM);
            goto err;
        }
    
        for (j = 0; j < pps->num_tile_rows; j++)
            for (i = 0; i < pps->num_tile_columns; i++)
                pps->tile_pos_rs[j * pps->num_tile_columns + i] = pps->row_bd[j] * sps->ctb_width + pps->col_bd[i];
    
        log2_diff_ctb_min_tb_size = sps->log2_ctb_size - sps->log2_min_tb_size;
        pps->min_tb_addr_zs = &pps->min_tb_addr_zs_tab[1*(sps->tb_mask+2)+1];
        for (y = 0; y < sps->tb_mask+2; y++) {
            pps->min_tb_addr_zs_tab[y*(sps->tb_mask+2)] = -1;
            pps->min_tb_addr_zs_tab[y]    = -1;
        }
        for (y = 0; y < sps->tb_mask+1; y++) {
            for (x = 0; x < sps->tb_mask+1; x++) {
                int tb_x        = x >> log2_diff_ctb_min_tb_size;
                int tb_y        = y >> log2_diff_ctb_min_tb_size;
                int ctb_addr_rs = sps->ctb_width * tb_y + tb_x;
                int val         = pps->ctb_addr_rs_to_ts[ctb_addr_rs] <<
                                  (log2_diff_ctb_min_tb_size * 2);
                for (i = 0; i < log2_diff_ctb_min_tb_size; i++) {
                    int m = 1 << i;
                    val += (m & x ?

    m * m : 0) + (m & y ? 2 * m * m : 0); } pps->min_tb_addr_zs[y * (sps->tb_mask+2) + x] = val; } } if (get_bits_left(gb) < 0) { av_log(s->avctx, AV_LOG_ERROR, "Overread PPS by %d bits ", -get_bits_left(gb)); goto err; } av_buffer_unref(&s->pps_list[pps_id]); s->pps_list[pps_id] = pps_buf; return 0; err: av_buffer_unref(&pps_buf); return ret; }


    与解析SPS相似,解析PPS源码并非非常有“技术含量”。

    仅仅要參考ITU-T的《H.264标准》就能够理解了,不再做过多具体的分析。



    ff_hevc_decode_nal_sei()

    ff_hevc_decode_nal_sei()用于解析HEVC码流中的SEI。

    该函数的定义位于libavcodechevc_sei.c,例如以下所看到的。

    //解析SEI
    int ff_hevc_decode_nal_sei(HEVCContext *s)
    {
        int ret;
    
        do {
        	//解析SEI信息
            ret = decode_nal_sei_message(s);
            if (ret < 0)
                return(AVERROR(ENOMEM));
        } while (more_rbsp_data(&s->HEVClc->gb));
        return 1;
    }
    

    从源码能够看出,ff_hevc_decode_nal_sei()在一个do while循环中调用了另外一个函数decode_nal_sei_message()解析SEI信息。


    decode_nal_sei_message()

    decode_nal_sei_message()用于解析SEI信息,它的定义例如以下。
    //解析SEI信息
    static int decode_nal_sei_message(HEVCContext *s)
    {
        GetBitContext *gb = &s->HEVClc->gb;
    
        int payload_type = 0;
        int payload_size = 0;
        int byte = 0xFF;
        av_log(s->avctx, AV_LOG_DEBUG, "Decoding SEI
    ");
    
        while (byte == 0xFF) {
            byte          = get_bits(gb, 8);
            payload_type += byte;
        }
        byte = 0xFF;
        while (byte == 0xFF) {
            byte          = get_bits(gb, 8);
            payload_size += byte;
        }
        if (s->nal_unit_type == NAL_SEI_PREFIX) {
            if (payload_type == 256 /*&& s->decode_checksum_sei*/) {
                decode_nal_sei_decoded_picture_hash(s);
            } else if (payload_type == 45) {
                decode_nal_sei_frame_packing_arrangement(s);
            } else if (payload_type == 47) {
                decode_nal_sei_display_orientation(s);
            } else if (payload_type == 1){
                int ret = decode_pic_timing(s);
                av_log(s->avctx, AV_LOG_DEBUG, "Skipped PREFIX SEI %d
    ", payload_type);
                skip_bits(gb, 8 * payload_size);
                return ret;
            } else if (payload_type == 129){
                active_parameter_sets(s);
                av_log(s->avctx, AV_LOG_DEBUG, "Skipped PREFIX SEI %d
    ", payload_type);
            } else {
                av_log(s->avctx, AV_LOG_DEBUG, "Skipped PREFIX SEI %d
    ", payload_type);
                skip_bits(gb, 8*payload_size);
            }
        } else { /* nal_unit_type == NAL_SEI_SUFFIX */
            if (payload_type == 132 /* && s->decode_checksum_sei */)
                decode_nal_sei_decoded_picture_hash(s);
            else {
                av_log(s->avctx, AV_LOG_DEBUG, "Skipped SUFFIX SEI %d
    ", payload_type);
                skip_bits(gb, 8 * payload_size);
            }
        }
        return 1;
    }
    

    从源码能够看出,decode_nal_sei_message()依据不同的payload_type调用不同的函数进行处理,比如调用decode_nal_sei_decoded_picture_hash(),decode_nal_sei_frame_packing_arrangement()。decode_nal_sei_display_orientation()等等。




    雷霄骅
    leixiaohua1020@126.com
    http://blog.csdn.net/leixiaohua1020

  • 相关阅读:
    CustomDrawableTextView
    Snippet: align a TextView around an image
    How to import library ?
    Gradle自定义你的BuildConfig
    使用adb shell dumpsys检测Android的Activity任务栈
    Activity intent经常使用的 FLAG
    使用 ContentProviderOperation 来提升性能
    幻方算法
    自己制作的粉碎机批处理程序
    Ubuntu 16.10 server 相关
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/5336101.html
Copyright © 2020-2023  润新知