• HDU 3036 Escape 网格图多人逃生 网络流||二分匹配 建图技巧


    题意:

    每一个' . '有一个姑娘, E是出口,'.'是空地 , 'X‘ 是墙。

    每秒钟每一个姑娘能够走一步(上下左右)

    每秒钟每一个出口仅仅能出去一个人

    给定n*m的地图, 时限T

    问全部姑娘是否能在T秒内逃生,若能输出最小值,不能输出"impossible"

    思路:

    显然是二分答案+网络流判可行。

    由于每一个出口每秒钟仅仅能出去一个人,那么就把每一个出口按时间拆点,则T秒钟就拆成T个点。


    网络流建图

    1、源点 到 每一个姑娘 建流量为1的边。

    2、若某姑娘到 a出口须要时间为 t秒,则建一条流量为1的边 连向a出口拆点为t秒的点。

    3、每一个出口的全部拆点向汇点连一条流量为1的边。

    4、对于每一个出口u的x秒拆点,向u的x+1秒的拆点连一条流量为inf的边(表示从x秒来的人假设x秒还从u出不去,能够在u等到x+1秒出去)


    二分一下 第二点中的 t 秒(即答案),推断最大流是否等于人数


    二分匹配建图:

    枚举时间(由于时间最大仅仅有12*12)

    在原图的基础上加上以下的边:

    在i时间内若能出去则那姑娘向全部能出去的 出口时间拆点连边。

    再在原来的匹配上继续增广,累计最大匹配数。

    当最大匹配数==人数时则是最小的时间。


    数据较水能够用点非主流的建图卡过去,预计仅仅有30组数据。


    网络流代码:

    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    #include<vector>
    using namespace std;
    
    #define ll int 
    
    #define N 20050
    #define M 105000
    #define inf 10737418
    struct Edge{  
    	ll from, to, cap, nex;  
    }edge[M*4];//注意这个一定要够大 不然会re 还有反向弧  
    
    ll head[N], edgenum;  
    void add(ll u, ll v, ll cap){  
    	Edge E = { u, v, cap, head[u]};  
    	edge[ edgenum ] = E;  
    	head[u] = edgenum ++;
    
    	Edge E2= { v, u, 0,   head[v]};  
    	edge[ edgenum ] = E2;  
    	head[v] = edgenum ++;  
    }  
    ll sign[N];  
    bool BFS(ll from, ll to){  
    	memset(sign, -1, sizeof(sign));  
    	sign[from] = 0;  
    
    	queue<ll>q;  
    	q.push(from);  
    	while( !q.empty() ){  
    		int u = q.front(); q.pop();  
    		for(ll i = head[u]; i!=-1; i = edge[i].nex)  
    		{  
    			ll v = edge[i].to;  
    			if(sign[v]==-1 && edge[i].cap)  
    			{  
    				sign[v] = sign[u] + 1, q.push(v);  
    				if(sign[to] != -1)return true;  
    			}  
    		}  
    	}  
    	return false;  
    }  
    ll Stack[N], top, cur[N];  
    ll dinic(ll from, ll to){
    	ll ans = 0;  
    	while( BFS(from, to) )  
    	{  
    		memcpy(cur, head, sizeof(head));  
    		ll u = from;      top = 0;  
    		while(1)  
    		{  
    			if(u == to)  
    			{  
    				ll flow = inf, loc;//loc 表示 Stack 中 cap 最小的边  
    				for(ll i = 0; i < top; i++)  
    					if(flow > edge[ Stack[i] ].cap)  
    					{  
    						flow = edge[Stack[i]].cap;  
    						loc = i;  
    					}  
    
    					for(ll i = 0; i < top; i++)  
    					{  
    						edge[ Stack[i] ].cap -= flow;  
    						edge[Stack[i]^1].cap += flow;  
    					}  
    					ans += flow;  
    					top = loc;  
    					u = edge[Stack[top]].from;  
    			}  
    			for(ll i = cur[u]; i!=-1; cur[u] = i = edge[i].nex)//cur[u] 表示u所在能增广的边的下标  
    				if(edge[i].cap && (sign[u] + 1 == sign[ edge[i].to ]))break;  
    			if(cur[u] != -1)  
    			{  
    				Stack[top++] = cur[u];  
    				u = edge[ cur[u] ].to;  
    			}  
    			else  
    			{  
    				if( top == 0 )break;  
    				sign[u] = -1;  
    				u = edge[ Stack[--top] ].from;  
    			}  
    		}  
    	}  
    	return ans;  
    }  
    
    void init(){memset(head,-1,sizeof head);edgenum = 0;}
    
    char mp[15][15];
    int n, m, T;
    int Hash(int x,int y){return x*m+y;}
    
    vector<int>E,P;
    int dis[150][150], step[4][2]={1,0,-1,0,0,1,0,-1};
    bool vis[150][150];
    void bfs(int sx,int sy){
    	int start = Hash(sx,sy);
    	memset(vis, 0, sizeof vis);
    	vis[sx][sy] = 1;
    	dis[start][start] = 0;
    	queue<int>qx,qy;	while(!qx.empty())qx.pop(); while(!qy.empty())qy.pop();
    	qx.push(sx), qy.push(sy);
    	while(!qx.empty()){
    		int x = qx.front(), y = qy.front();
    		qx.pop(); qy.pop();
    		for(int i = 0; i < 4; i++){
    			int dx = x + step[i][0], dy = y + step[i][1];
    			if(!(0<=dx&&dx<n&&0<=dy&&dy<m))continue;
    			if(vis[dx][dy] || mp[dx][dy]!='.')continue;
    			vis[dx][dy] = 1;
    			dis[Hash(dx,dy)][start] = dis[start][Hash(dx,dy)] = dis[start][Hash(x,y)]+1;
    			qx.push(dx); qy.push(dy);
    		}
    	}
    }
    bool ok(int TIME){
    	init();
    	int from = N-2, to = N-1;
    	for(int i = 0; i < P.size(); i++)add(from, P[i], 1);
    	for(int i = 0; i < P.size(); i++)
    	{
    		for(int j = 0; j < E.size(); j++)
    			if(dis[P[i]][E[j]]<=TIME)	add(P[i],j*150+150+dis[P[i]][E[j]],1);
    	}
    	for(int i = 0; i < E.size(); i++)
    		for(int j = 1; j <= TIME; j++) 
    		{
    			add(i*150+150+j, to, 1);
    			if(j!=TIME)
    				add(i*150+150+j,i*150+150+j+1,inf);
    		}
    	return dinic(from,to)==P.size();
    }
    int main(){
    	//freopen("date.in","r+",stdin);
    	//freopen("ans.out","w+",stdout);
    
    	int i, j;
    	while(~scanf("%d %d %d",&n,&m,&T)){
    		E.clear(); P.clear();
    		memset(dis, 0, sizeof dis);
    		memset(mp, 0, sizeof mp);
    		for(i=0;i<n;i++)scanf("%s",mp[i]);
    		
    
    		for(i=0;i<n;i++)for(j=0;j<m;j++)
    		{
    			if(mp[i][j]=='E')E.push_back(Hash(i,j));
    			else if(mp[i][j]=='.')P.push_back(Hash(i,j));
    		}
    		if(P.size()==0){puts("0");continue;}	if(E.size()==0){puts("impossible");continue;}
    
    		for(i = 0; i < E.size(); i++)bfs(E[i]/m, E[i]%m);
    		int l = 1, r = 256, ans = inf;
    		while(l<=r)
    		{
    			int mid = (l+r)>>1;
    			if(ok(mid))ans = min(ans, mid), r = mid-1;
    			else l = mid+1;
    		}
    		if(T<ans || ans==inf){puts("impossible");continue;}
    		else printf("%d
    ",ans);
    	}
    	return 0;
    }
    /*
    6 12 100000
    ......E....E
    E.EEE...E...
    ...E....EE..
    .E.E.......E
    .....E......
    .E...E...EE.
    11 3 100000
    X..
    ...
    .E.
    EE.
    E.E
    ...
    ...
    .E.
    E..
    ..E
    E..
    7 6 100000
    .E..E.
    ...E..
    ......
    ...E.E
    ...X..
    ...EE.
    ....E.
    11 10 100000
    .E........
    ......E...
    ........E.
    EE....E..E
    ...E...E..
    ......XE.E
    ..........
    .........X
    .........E
    .EE.......
    ..EE.E.E.E
    7 3 100000
    ...
    ..E
    ...
    ..X
    EE.
    ...
    .X.
    3 2 100000
    ..
    ..
    EE
    6 7 100000
    ..E....
    .......
    .....E.
    ...EE..
    .......
    .......
    6 8 100000
    ..EEEE..
    ...E....
    ........
    ........
    .......E
    E......E
    
    10 8 100000
    E.E..X..
    ........
    E...E...
    E..E....
    ........
    .....E..
    ......EX
    ........
    .E......
    ..E..EE.
    
    5 5 100
    .....
    XXXXX
    EEEEE
    .....
    XXXXX
    
    1 1 1
    E
    
    1 1 1
    P
    1 1 1
    X
    
    2 2 1
    E.
    .X
    
    2 2 2
    E.
    .X
    
    8 1 1000
    .
    E
    .
    .
    .
    .
    .
    .
    
    3 4 100
    E...
    ....
    ...E
    
    3 4 100
    E...
    .E..
    ...E
    
    4 5 100
    E....
    .E...
    ...E.
    .....
    
    4 5 100
    .....
    .E...
    .....
    .....
    
    12 12 10000000
    ...E.....E.E
    E.E.E.....E.
    .......E....
    ............
    ......E.....
    ............
    ...E.....E.E
    E.E.E.....E.
    .......E....
    ............
    ......E.....
    ............
    
    12 12 6
    ...E.....E.E
    E.E.E.....E.
    .......E....
    ............
    ......E.....
    ............
    ...E.....E.E
    E.E.E.....E.
    .......E....
    ............
    ......E.....
    ............
    
    12 12 10000000
    E...........
    ............
    ............
    ............
    ............
    ............
    ............
    ............
    ............
    ............
    ............
    ............
    
    12 12 10000000
    E...........
    ............
    ............
    ............
    ............
    .....E......
    ............
    ............
    ............
    ............
    ............
    ...........E
    
    3 3 10
    ...
    .E.
    ...
    
    */
    
    二分匹配代码:

    #include <set>
    #include <map>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <string>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    /* '0. Macros, Preprocessers, */
    #pragma comment(linker, "/STACK:102400000,102400000")
    #ifdef _WIN32
    typedef __int64 int64;
    #define OD(_TYPE) printf("%I64d
    ", _TYPE)
    #define ODC(_CASE, _TYPE) printf("Case %d: %I64d
    ", _CASE++, _TYPE);
    #else
    typedef long long int64;
    #define OD(_TYPE) printf("%lld
    ", _TYPE)
    #define ODC(_CASE, _TYPE) printf("Case %d: %lld
    ", _CASE++, _TYPE);
    #endif
    #define LSON l,mid,id<<1
    #define RSON mid+1,r,id<<1|1
    #define MM (l+r)>>1
    
    /* '1. Constants, */
    const double EPS = 1e-8;
    const double PI = acos(-1.0);
    const int INF = 0x3f3f3f3f;
    
    /* '2. Coding Area, */
    const int N = 15;
    const int M = 205;
    const int dir[4][2] = { { -1, 0 }, { 0, 1 }, { 1, 0 }, { 0, -1 } };
    struct STATE {
        int x, y, t;
        STATE() { }
        STATE(int x, int y, int t) : x(x), y(y), t(t) { }
    };
    int uN, vN;
    vector<int> g[M];
    int linker[M * M];  // 每一个v相应的u匹配
    bool used[M * M];
    char mp[N][N];
    int dis[M][M];  // 每一个女孩到出口的最短时间
    bool vis[N][N];  // 訪问过或没有
    int r, c, T;
    int gid, eid;
    map<pair<int, int>, int> mpg, mpe;  // 每一个点的编号
    
    bool dfs(int u) {
        for (unsigned int i = 0; i < g[u].size(); i++) {
            int v = g[u][i];
            if (used[v]) continue;
            used[v] = true;
            if (linker[v] == -1 || dfs(linker[v])) {
                linker[v] = u;
                return true;
            }
        }
        return false;
    }
    
    int hungary() {
        int res = 0;
        memset(linker, -1, sizeof(linker));
        for (int u = 0; u < uN; u++) {
            memset(used, 0, sizeof(used));
            if (dfs(u))
                ++res;
        }
        return res;
    }
    
    void bfs(int x, int y) {
        queue<STATE> q;
        int eid = mpe[make_pair(x, y)];
        memset(vis, 0, sizeof(vis));
        vis[x][y] = 1;
        q.push(STATE(x, y, 0));
        while (!q.empty()) {
            STATE now = q.front();
            q.pop();
            for (int i = 0; i < 4; i++) {
                int dx = now.x + dir[i][0];
                int dy = now.y + dir[i][1];
                if (dx >= 0 && dx < r && dy >= 0 && dy < c) {
                    if (mp[dx][dy] != '.') continue;
                    if (vis[dx][dy]) continue;
                    int gid = mpg[make_pair(dx, dy)];
                    q.push(STATE(dx, dy, now.t + 1));
                    dis[gid][eid] = now.t + 1;
                    vis[dx][dy] = 1;
                }
            }
        }
    }
    
    bool build_and_run(int limit) {
        for (int i = 0; i < M; i++) g[i].clear();
        uN = gid, vN = eid * limit;
        for (int i = 0; i < gid; i++) {
            for (int j = 0; j < eid; j++) {
                for (int k = dis[i][j]; k <= limit; k++) {
                    g[i].push_back(j * limit + k);
                }
            }
        }
        int ans = hungary();
        if (ans >= gid) return true;
        return false;
    }
    
    void gao() {
        gid = eid = 0;
        mpg.clear(); mpe.clear();
        memset(dis, 0x3f, sizeof(dis));
        for (int i = 0; i < r; i++) {
            scanf("%s", mp[i]);
            for (int j = 0; j < c; j++) {
                if (mp[i][j] == 'E') mpe[make_pair(i, j)] = eid++;
                if (mp[i][j] == '.') mpg[make_pair(i, j)] = gid++;
            }
        }
    
        for (int i = 0; i < r; i++) {
            for (int j = 0; j < c; j++) {
                if (mp[i][j] == 'E') {
                    bfs(i, j);
                }
            }
        }
    
        int L = 1, R = 256, ans = INF;
        while (L <= R) {
            int mid = (L + R) >> 1;
            if (build_and_run(mid)) {
                ans = mid;
                R = mid - 1;
            } else {
                L = mid + 1;
            }
        }
        if (ans == INF || ans > T) {
            printf("impossible
    ");
        } else {
            printf("%d
    ", ans);
        }
    }
    
    int main() {
        while (~scanf("%d%d%d", &r, &c, &T)) {
            memset(g, 0, sizeof(g));
            gao();
        }
        return 0;
    }



  • 相关阅读:
    Ignite、Vertx
    Spring boot ConditionalOnClass原理解析
    SPI
    Redis (总结)
    Mysql 线程池 ===
    Mysql JDBC-mysql-Driver queryTimeout分析
    Java网关服务-AIO(三)
    Java网关服务-AIO(二)
    Java网关服务-AIO(一)
    Java nio Server端示例
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/4371565.html
Copyright © 2020-2023  润新知