• hdu 4961 Boring Sum(数学题)


    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4961


    Problem Description
    Number theory is interesting, while this problem is boring.

    Here is the problem. Given an integer sequence a1, a2, …, an, let S(i) = {j|1<=j<i, and aj is a multiple of ai}. If S(i) is not empty, let f(i) be the maximum integer in S(i); otherwise, f(i) = i. Now we define bi as af(i). Similarly, let T(i) = {j|i<j<=n, and aj is a multiple of ai}. If T(i) is not empty, let g(i) be the minimum integer in T(i); otherwise, g(i) = i. Now we define ci as ag(i). The boring sum of this sequence is defined as b1 * c1 + b2 * c2 + … + bn * cn.

    Given an integer sequence, your task is to calculate its boring sum.
     

    Input
    The input contains multiple test cases.

    Each case consists of two lines. The first line contains an integer n (1<=n<=100000). The second line contains n integers a1, a2, …, an (1<= ai<=100000).

    The input is terminated by n = 0.
     

    Output
    Output the answer in a line.
     

    Sample Input
    5 1 4 2 3 9 0
     

    Sample Output
    136
    Hint
    In the sample, b1=1, c1=4, b2=4, c2=4, b3=4, c3=2, b4=3, c4=9, b5=9, c5=9, so b1 * c1 + b2 * c2 + … + b5 * c5 = 136.
     

    Author
    SYSU
     

    Source

    题意:

    给出一个数列:a[i],然后

    b[i]:表示在 i 前面的项,假设有a[i]的倍数(要最靠近i的),那么b[i]就等于这个数,假设没有那么b[i] = a[i];

    c[i]:表示在 i 后面的项,假设有a[i]的倍数(要最靠近i的),那么c[i] 就等于这个数,假设没有那么c[i] = a[i];

    思路:

    //先打表,把每一个数的约数存在vector里;
    //然后从前往后扫一遍,结果存在b[i],

    //Ps:假设不清楚为什么从前往后扫一遍就是最靠近的那个数可调试一下(案例:9 6 3 2 1);
    //然后从后往前扫一遍,结果存在c[i],

    //Ps:假设不清楚为什么从后往前扫一遍就是最靠近的那个数可调试一下(案例:1 2 3 6 9);
    //最后计算b[i]*c[i]的和就可以。


    代码例如以下:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #define maxn 100000+17
    using namespace std;
    typedef __int64 LL;
    int vis[maxn];
    int a[maxn], b[maxn], c[maxn];
    vector<int>V[maxn];
    void init()
    {
        for(int i = 0; i < maxn; i++)
            V[i].clear();
        for(int i = 1; i <= maxn; i++)
        {
            for(int j = 1; j*i <= maxn; j++)//每一个数对应的约数
            {
                V[i*j].push_back(i);//i是哪些数的约数
            }
        }
    }
    int main()
    {
        int n;
        init();
        while(scanf("%d",&n) && n)
        {
            for(int i = 1; i <= n; i++)
            {
                scanf("%d",&a[i]);
            }
            memset(vis,0,sizeof(vis));
            for(int i = 1; i <= n; i++)
            {
                if(vis[a[i]] == 0)
                    b[i]=a[i];
                else
                    b[i]=vis[a[i]];//a[i]的倍数
                for(int j = 0; j < V[a[i]].size(); j++)
                    vis[V[a[i]][j]] = a[i];//V[a[i]][j]为a[i]的约数
            }
            memset(vis,0,sizeof(vis));
            for(int i = n; i >= 1; i--)
            {
                if(vis[a[i]] == 0)
                    c[i] = a[i];
                else
                    c[i] = vis[a[i]];
                for(int j = 0; j < V[a[i]].size(); j++)
                    vis[V[a[i]][j]] = a[i];
            }
            LL sum=0;
            for(int i = 1; i <= n; i++)
            {
                sum += (LL)b[i]*(LL)c[i];
            }
            printf("%I64d
    ",sum);
        }
        return 0;
    }
    


  • 相关阅读:
    openpyxl(python操作Excel)
    python爬虫之数据加密解密
    python爬虫之字体反爬
    识别缩略图加载
    Windows文件共享自动失效解决办法
    pygame
    获取文件路径、文件名、后缀名
    Oracle EBS INV 挑库发放物料搬运单
    Oracle EBS INV 删除保留
    Oracle EBS INV 创建货位
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/4326726.html
Copyright © 2020-2023  润新知