• 关于神经网络算法的 Python例程


    # Back-Propagation Neural Networks
    #
    # Written in Python.  See http://www.python.org/
    # Placed in the public domain.
    # Neil Schemenauer <nas@arctrix.com>

    import math
    import random
    import string

    random.seed(0)

    # calculate a random number where:  a <= rand < b
    def rand(a, b):
        return (b-a)*random.random() + a

    # Make a matrix (we could use NumPy to speed this up)
    def makeMatrix(I, J, fill=0.0):
        m = []
        for i in range(I):
            m.append([fill]*J)
        return m

    # our sigmoid function, tanh is a little nicer than the standard 1/(1+e^-x)
    def sigmoid(x):
        return math.tanh(x)

    # derivative of our sigmoid function, in terms of the output (i.e. y)
    def dsigmoid(y):
        return 1.0 - y**2

    class NN:
        def __init__(self, ni, nh, no):
            # number of input, hidden, and output nodes
            self.ni = ni + 1 # +1 for bias node
            self.nh = nh
            self.no = no

            # activations for nodes
            self.ai = [1.0]*self.ni
            self.ah = [1.0]*self.nh
            self.ao = [1.0]*self.no
            
            # create weights
            self.wi = makeMatrix(self.ni, self.nh)
            self.wo = makeMatrix(self.nh, self.no)
            # set them to random vaules
            for i in range(self.ni):
                for j in range(self.nh):
                    self.wi[i][j] = rand(-0.2, 0.2)
            for j in range(self.nh):
                for k in range(self.no):
                    self.wo[j][k] = rand(-2.0, 2.0)

            # last change in weights for momentum   
            self.ci = makeMatrix(self.ni, self.nh)
            self.co = makeMatrix(self.nh, self.no)

        def update(self, inputs):
            if len(inputs) != self.ni-1:
                raise ValueError('wrong number of inputs')

            # input activations
            for i in range(self.ni-1):
                #self.ai[i] = sigmoid(inputs[i])
                self.ai[i] = inputs[i]

            # hidden activations
            for j in range(self.nh):
                sum = 0.0
                for i in range(self.ni):
                    sum = sum + self.ai[i] * self.wi[i][j]
                self.ah[j] = sigmoid(sum)

            # output activations
            for k in range(self.no):
                sum = 0.0
                for j in range(self.nh):
                    sum = sum + self.ah[j] * self.wo[j][k]
                self.ao[k] = sigmoid(sum)

            return self.ao[:]


        def backPropagate(self, targets, N, M):
            if len(targets) != self.no:
                raise ValueError('wrong number of target values')

            # calculate error terms for output
            output_deltas = [0.0] * self.no
            for k in range(self.no):
                error = targets[k]-self.ao[k]
                output_deltas[k] = dsigmoid(self.ao[k]) * error

            # calculate error terms for hidden
            hidden_deltas = [0.0] * self.nh
            for j in range(self.nh):
                error = 0.0
                for k in range(self.no):
                    error = error + output_deltas[k]*self.wo[j][k]
                hidden_deltas[j] = dsigmoid(self.ah[j]) * error

            # update output weights
            for j in range(self.nh):
                for k in range(self.no):
                    change = output_deltas[k]*self.ah[j]
                    self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
                    self.co[j][k] = change
                    #print N*change, M*self.co[j][k]

            # update input weights
            for i in range(self.ni):
                for j in range(self.nh):
                    change = hidden_deltas[j]*self.ai[i]
                    self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
                    self.ci[i][j] = change

            # calculate error
            error = 0.0
            for k in range(len(targets)):
                error = error + 0.5*(targets[k]-self.ao[k])**2
            return error


        def test(self, patterns):
            for p in patterns:
                print(p[0], '->', self.update(p[0]))

        def weights(self):
            print('Input weights:')
            for i in range(self.ni):
                print(self.wi[i])
            print()
            print('Output weights:')
            for j in range(self.nh):
                print(self.wo[j])

        def train(self, patterns, iterations=1000, N=0.5, M=0.1):
            # N: learning rate
            # M: momentum factor
            for i in range(iterations):
                error = 0.0
                for p in patterns:
                    inputs = p[0]
                    targets = p[1]
                    self.update(inputs)
                    error = error + self.backPropagate(targets, N, M)
                if i % 100 == 0:
                    print('error %-.5f' % error)


    def demo():
        # Teach network XOR function
        pat = [
            [[0,0], [0]],
            [[0,1], [1]],
            [[1,0], [1]],
            [[1,1], [0]]
        ]

        # create a network with two input, two hidden, and one output nodes
        n = NN(2, 2, 1)
        # train it with some patterns
        n.train(pat)
        # test it
        n.test(pat)



    if __name__ == '__main__':
        demo()

  • 相关阅读:
    HHHOJ #153. 「NOI模拟 #2」Kotomi
    HHHOJ #151. 「NOI模拟 #2」Nagisa
    Luogu P5298 [PKUWC2018]Minimax
    Luogu P5368 [PKUSC2018]真实排名
    Luogu P5408 【模板】第一类斯特林数·行
    Codechef December Challenge 2019 Division 1
    AtCoder Grand Contest 040
    CSP2019游记(翻车记)
    Codeforces Round #594 (Div. 1)
    AtCoder Grand Contest 039
  • 原文地址:https://www.cnblogs.com/beyond1983/p/3872768.html
Copyright © 2020-2023  润新知