• 排列问题


    Leetcode 46. Permutations

    给定一个包含不同整数的集合,生成所有可能的排列。

    class Solution {
    public:
        vector<vector<int>> permute(vector<int>& nums) {
            vector<vector<int>> result;
            help(nums, 0, result);
            return result;
        }
        
        // permute num[begin..end]
        // invariant: num[0..begin-1] have been fixed/permuted
        void help(vector<int>& nums, int begin, vector<vector<int>>& result){
            if(begin >= nums.size()){
                // one permutation instance
                result.push_back(nums);
                return;
            }
            for(int i = begin; i < nums.size(); ++i){
                swap(nums[i], nums[begin]);
                help(nums, begin + 1, result);
                // reset
                swap(nums[i], nums[begin]);
            }
        }
    };

     Leetcode 47. Permutations II

    给定一个可能包含重复整数的集合,生成所有可能的排列。

    分析:值传递?

    class Solution {
    public:
        vector<vector<int>> permuteUnique(vector<int>& nums) {
            vector<vector<int>> result;
            sort(nums.begin(), nums.end());
            help(nums, 0, result);
            return result;
        }
        
        void help(vector<int> nums, int begin, vector<vector<int>>& result){
            if(begin == nums.size() - 1){
                result.push_back(nums);
                return;
            }
            for(int i = begin; i < nums.size(); ++i){
                if(i != begin && nums[i] == nums[begin]) continue;
                else{
                    swap(nums[begin], nums[i]);
                    help(nums, begin + 1, result);
                }
            }
        }
    };

     Leetcode 31. Next Permutation

    实现next permutation

    class Solution {
    public:
        void nextPermutation(vector<int>& nums) {
            int n = nums.size(), k, l;
            for(k = n - 2; k >= 0; --k){
                if(nums[k] < nums[k + 1])
                    break;
            }
            if(k < 0) reverse(nums.begin(), nums.end());
            else{
                for(l = n - 1; l > k; --l){
                    if(nums[l] > nums[k])
                        break;
                }
                swap(nums[k], nums[l]);
                reverse(nums.begin() + k + 1, nums.end());
            }
        }
    };

     Leetcode 60. Permutation Sequence

    集合$[1,2,3,...,n]$可以构成$n!$个排列。给定$n,k$,求第k个排列(index from 1).

    分析:每一个数字开头的排列共有$(n - 1)!$个,确定第k个在哪一组,把那个数字放到s[0]上,然后同样的方法确定s[1...n-1].

    class Solution {
    public:
        string getPermutation(int n, int k) {
            int i, j, f = 1;
            // left part of s is partially formed permutation, right part is the leftover chars.
            string s(n, '0');
            for(int i = 1; i <= n; ++i){
                f *= i;
                s[i - 1] += i; // make s become 1234...n
            }
            for(i = 0, k--; i < n; ++i){
                f /= n - i;
                j = i + k / f; // calculate index of char to put at s[i]
                char c = s[j];
                // remove c by shifting to cover up (adjust the right part).
                for(; j > i; --j)
                    s[j] = s[j - 1];
                k %= f;
                s[i] = c;
            }
            return s;
        }
    };
  • 相关阅读:
    设计模式学习之路——Strategy 策略模式
    C# 异步编程 结束异步调用
    设计模式学习之路——Chain Of Responsibility 职责链模式
    delphi笔记之XML操作
    AS3判断XML属性是否存在
    Loader ,URLLoader ,URLStream的使用区别(转)
    delphi笔记之nativeXml
    Delphi的颜色转换
    Delphi利用Bass.dll播放音频
    【转】球坐标旋转
  • 原文地址:https://www.cnblogs.com/betaa/p/11679179.html
Copyright © 2020-2023  润新知