[UOJ题面]http://uoj.ac/problem/349
一道非常好的与数据结构有关的交互题。
首先先看部分分做法,
一上来我们肯定得钦定一个 (explore) 的顺序,直接随机就好。
当 (n) 很小的时候就是直接从 1 号点一路 (explore) 过去就好了,这样次数是 (O(n^2)) 的。
由于完全二叉树树高是 log 的,所以它实际也能过第二个包。
然后来看一下链的情况,稍加思考我们可以得到这么一个做法:就是维护当前已经 (explore) 的点的连续区间的左右端点,这样就只需往两边扩展了
这部分是 (O(n)) 的。能通过第三个包。
我们把这个想法移到树上,于是就拿一个LCT来维护已经 (explore) 出来的点。
那么我们的问题就是怎么快速找到一个新点他在哪,然后我们写一个 (Splay) 上二分。
因为询问得到的是 (now) 的邻点,而当前这颗 (Splay) 上 (now) 的邻点只有前驱和后继,那么只要分三种情况讨论一下下一步去哪里就行:
(1)前驱(2)后继(3)它属于另一个 (Splay),直接去它那个根就行。
至于找前驱跟后继的话,可以拿 (Splay) 顺便维护出来。(可以参考Code)
一些细节:
为了保证复杂度,每次寻点结束时记得 (Access);
找根的时候不能 (Splay) 否则过不去 ( ext{Extra Test})。
最后把算法三、四合起来就行。
#include "rts.h"
#include "algorithm"
using namespace std;
const int N=300005;
int vis[N];
int p[N];
#define lc(x) (ch[x][0])
#define rc(x) (ch[x][1])
int ch[N][2],f[N],L[N],R[N];
int g(int x)
{
return rc(f[x])==x;
}
int nrt(int x)
{
return lc(f[x])==x || rc(f[x])==x;
}
void up(int x)
{
L[x]=R[x]=x;
if(lc(x)) L[x]=L[lc(x)];
if(rc(x)) R[x]=R[rc(x)];
}
void rot(int x)
{
int y=f[x],i=g(x);
if(nrt(y))
ch[f[y]][g(y)]=x;
f[x]=f[y];
ch[y][i]=ch[x][i^1];
f[ch[x][i^1]]=y;
ch[x][i^1]=y;
f[y]=x;
up(y);
}
void splay(int x)
{
for(int y=f[x];nrt(x);rot(x),y=f[x])
if(nrt(y))
rot(g(x)==g(y)?y:x);
up(x);
}
void access(int x)
{
for(int y=0;x;y=x,x=f[x])
{
splay(x);
rc(x)=y;
}
}
int gr(int x)
{
for(;nrt(x);x=f[x]); return x;
}
void play(int n, int T, int dataType) {
vis[1]=1;
if(dataType==2)
{
for(int i=2; i<=n; i++)
{
if(vis[i])
continue;
int now=1;
while(now!=i) {
now=explore(now,i);
vis[now]=1;
}
}
}
else if(dataType==3)
{
for(int i=1;i<=n;i++)p[i]=i;
int l,r;
l=r=1;
srand(20030118);
for(int i=1;i<=5*n;i++)
{
int x=rand()%n+1;
int y=rand()%n+1;
swap(p[x],p[y]);
}
for(int i,j=1;j<=n;j++)
{
i=p[j];
if(vis[i])
continue;
int now=explore(l,i);
if(!vis[now])
{
vis[now]=1;
while(now!=i) {
now=explore(now,i);
vis[now]=1;
}
l=i;
}
else
{
now=explore(r,i);
vis[now]=1;
while(now!=i) {
now=explore(now,i);
vis[now]=1;
}
r=i;
}
}
}
else
{
for(int i=1;i<=n;i++)p[i]=i;
srand(20030118);
for(int i=1;i<=5*n;i++)
{
int x=rand()%n+1;
int y=rand()%n+1;
swap(p[x],p[y]);
}
for(int i,j=1;j<=n;j++)
{
i=p[j];
if(vis[i])
continue;
int now=gr(1);
while(now!=i)
{
while(1)
{
int t=explore(now,i);
if(t==R[lc(now)]) now=lc(now);
else if(t==L[rc(now)]) now=rc(now);
else {
if(!vis[t])
vis[t]=1,f[t]=now;
now=gr(t);
break;
}
}
}
access(now);
}
}
}