• 874.Walking Robot Simulation(list不可被哈希)


    A robot on an infinite grid starts at point (0, 0) and faces north. The robot can receive one of three possible types of commands:

    • -2: turn left 90 degrees
    • -1: turn right 90 degrees
    • 1 <= x <= 9: move forward x units

    Some of the grid squares are obstacles.

    The i-th obstacle is at grid point (obstacles[i][0], obstacles[i][1])

    If the robot would try to move onto them, the robot stays on the previous grid square instead (but still continues following the rest of the route.)

    Return the square of the maximum Euclidean distance that the robot will be from the origin.

    Example 1:

    Input: commands = [4,-1,3], obstacles = []
    Output: 25
    Explanation: robot will go to (3, 4)

    Example 2:

    Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
    Output: 65
    Explanation: robot will be stuck at (1, 4) before turning left and going to (1, 8)

    Note:

    • 0 <= commands.length <= 10000
    • 0 <= obstacles.length <= 10000
    • -30000 <= obstacle[i][0] <= 30000
    • -30000 <= obstacle[i][1] <= 30000
    • The answer is guaranteed to be less than 2 ^ 31.

    Solution1:(TLE)

    class Solution:
        def robotSim(self, commands, obstacles):
            """
            :type commands: List[int]
            :type obstacles: List[List[int]]
            :rtype: int
            """
            pos = [0,0]
            direction = 0
            def turn(pre,new):
                if new == -1:
                    now = (pre + 1)%4
                else:
                    now = (pre - 1)%4
                return now
            def move(direction,distance):
                if direction==0:
                    while distance>0:
                        distance -= 1
                        pos[1] += 1
                        if pos in obstacles:
                            pos[1] -= 1
                            break
                if direction==1:
                    while distance>0:
                        distance -= 1
                        pos[0] += 1
                        if pos in obstacles:
                            pos[0] -= 1
                            break
                if direction==2:
                    while distance>0:
                        distance -= 1
                        pos[1] -= 1
                        if pos in obstacles:
                            pos[1] += 1
                            break
                if direction==3:
                    while distance>0:
                        distance -= 1
                        pos[0] -= 1
                        if pos in obstacles:
                            pos[0] += 1
                            break
                return
            res = 0
            for i in commands:
                # print(i)
                if i>0:
                    move(direction,i)
                    # print('pos:',pos,"direction:",direction)
                else:
                    direction = turn(direction,i)
                    # print('pos:',pos,"direction:",direction)
                res = max(pos[0] * pos[0] + pos[1] * pos[1], res)
            return res
    

    有一个结果过不了,百思不得其解,画了图对照走了一遍也没有错。最后发现返回的结果是中间任意时刻离原点的最大值,而不是最终的结果,太坑了。

    Solution2:

    class Solution:
        def robotSim(self, commands, obstacles):
            """
            :type commands: List[int]
            :type obstacles: List[List[int]]
            :rtype: int
            """
            s = set()
            for i in obstacles:
                s.add(tuple(i))
            pos = [0,0]
            direction = 0
            def turn(pre,new):
                if new == -1:
                    now = (pre + 1)%4
                else:
                    now = (pre - 1)%4
                return now
            def move(direction,distance):
                if direction==0:
                    while distance>0:
                        distance -= 1
                        pos[1] += 1
                        if tuple(pos) in s:
                            pos[1] -= 1
                            break
                if direction==1:
                    while distance>0:
                        distance -= 1
                        pos[0] += 1
                        if tuple(pos) in s:
                            pos[0] -= 1
                            break
                if direction==2:
                    while distance>0:
                        distance -= 1
                        pos[1] -= 1
                        if tuple(pos) in s:
                            pos[1] += 1
                            break
                if direction==3:
                    while distance>0:
                        distance -= 1
                        pos[0] -= 1
                        if tuple(pos) in s:
                            pos[0] += 1
                            break
                return
            res = 0
            for i in commands:
                # print(i)
                if i>0:
                    move(direction,i)
                    # print('pos:',pos,"direction:",direction)
                else:
                    direction = turn(direction,i)
                    # print('pos:',pos,"direction:",direction)
                res = max(pos[0] * pos[0] + pos[1] * pos[1], res)
            return res
    

    改用set存储obstacle而不是list,不再超时了。set查找元素是哈希的方法,需要O(1),而list则是O(n)。
    注意list是不可以被哈希的,故改用tuple来存储到set中。

  • 相关阅读:
    安装GitLab出现ruby_block[supervise_redis_sleep] action run
    docker tag根据镜像id做标签,用于应用的回滚
    Jenkenis报错:该jenkins实例似乎已离线
    kubernetes-批量删除Evicted Pods
    阿里云k8s构建镜像时设置版本号用于版本回滚
    Java虚拟机6:内存溢出和内存泄露、并行和并发、Minor GC和Full GC、Client模式和Server模式的区别
    Java虚拟机5:Java垃圾回收(GC)机制详解
    Java虚拟机4:内存溢出
    Java虚拟机3:常用JVM命令参数
    Java虚拟机2:Java内存区域及对象
  • 原文地址:https://www.cnblogs.com/bernieloveslife/p/9751086.html
Copyright © 2020-2023  润新知