• 高精度模板


    /*
        大整数Bignum类 开始写于2016.06.29
        #----- Version 1.0.0
            支持有符号运算
                已实现+,-,*(位数较大(位数之和>800)时FFT,较小时模拟),
                abs(绝对值)
    
        代码供学习交流使用,版权没有,欢迎盗版。
                                        -- 作者:sxysxy
    
        #----- Version 1.0.1 更新于2016.07.02
            实现 /(二分法), sqrt(二分法), pow(快速幂),log(暴力,因为考虑到答案一般都比较小)
            lg(即log(10)), factorial(阶乘)
            添加printB函数便于调试
                                        -- sxysxy
    
        LICENSE:
            This file is under GPL.
            You can redistribute it and/or modify it under the terms of the 
        GNU General Public License as published by the Free Software Foundation,
        either version 3 of the License, or (at your option) any later version.
    */
    
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <algorithm>
    #include <vector>
    #include <list>
    #include <map>
    #include <cstring>
    #include <string>
    #include <iostream>
    #include <fstream>
    #include <cmath>
    using namespace std;
    
    #define BIGNUM_DEBUG 2333
    
    class Bignum
    {
        void mknum(const char *s, int len = -1)
        {
            sign = 0;
            if(*s == '-')
            {
                mknum(s+1);
                sign = 1;
                return;
            }
            int l;
            if(len == -1)
                l = strlen(s);
            else
                l = len;
            l = strlen(s);
            bits.clear();
            bits.resize(l);
            for(int i = l-1; i >= 0; i--)
                bits[l-i-1] = s[i] - '0';
            maintain();
        }
        void mknum(string &s)
        {
            mknum(s.c_str(), s.length());
        }
    //    -------------
        void us_addto(Bignum &b)  // unsigned add to
        {
            int mlen = max(b.bits.size(), bits.size());
            int slen = bits.size();
            int olen = b.bits.size();
            bits.resize(mlen);
            for(int i = 0; i < mlen; i++)
            {
                int s = 0;
                if(i < slen)s += bits[i];
                if(i < olen)s += b.bits[i];
                bits[i] = s;
            }
            maintain();
        }
        class FFTer
        {
            class Complex
            {
            public:
                double real, image;
                Complex(double a = 0, double b = 0)
                {
                    real = a;
                    image = b;
                }
                Complex operator + (const Complex &o){return Complex(real+o.real, image+o.image);}
                Complex operator - (const Complex &o){return Complex(real-o.real, image-o.image);}
                Complex operator * (const Complex &o){return Complex(real*o.real-image*o.image, real*o.image+o.real*image);}
                Complex operator * (double k){return Complex(real*k, image*k);}
                Complex operator / (double k){return Complex(real/k, image/k);}
            };
            public:
            vector<Complex> a;  //系数向量
            int n;                //多项式次数上界
            FFTer(vector<int> &vec)
            {
                a.resize(vec.size());
                for(int i = 0; i < vec.size(); i++)
                    a[i].real = vec[i];
                n = vec.size();
            }
            void transform()
            {
                int j = 0;
                int k;
                for(int i = 0; i < n; i++)
                {
                    if(j > i)swap(a[i], a[j]);
                    k = n;
                    while(j & (k >>= 1))j &= ~k;
                    j |= k;
                }
            }
            void FFT(bool IDFT = false)
            {
                const double Pi = IDFT?-acos(-1.0):acos(-1.0);
                                //IDFT与DFT选择方向相反(符号相反)
                transform();    //交换元素(翻转二进制位,具体看下面注释,再具体看算导
                for(int s = 1; s < n; s <<= 1)
                {    //算法导论上是fot s = 1 to lgn,考虑到精度问题改为上面那个...
                    for(int t = 0; t < n; t += s<<1)
                    {
                    //合并[t, t+s-1]与 [t+s, t+2*s-1] (算导上以指数形式给出,注意到他的s....)
                    //合并为[t, t+2*s-1] (看起来像是废话) (有示例图在算导上,画得很形象的)
                    /*                一个更简单的示例图
                        (翻转过程)          翻转             合并
                        00    ->    00        0-|--|---------------------------
                                          |  |                    
                        01    ->    10        1-|--|--- /---------------------
                                          |     |    X             
                        10    ->    01        2-|--|---/ ---------------------
                                          |  |          
                        11    ->    11        3-|--|---------------------------
                    */
                        double x = Pi/s;
                        Complex omgn(cos(x), sin(x));
                        Complex omg(1.0, 0.0);    //单位向量
                        for(int m = 0; m < s; m++)
                        {            //旋转
                            int a1 = m+t;
                            int a2 = m+t+s;   //取两边系数向量的系数
                            //算导上管这个叫公共子表达式消除
                                //(其实就是一个变量计算一次然后保存下来用多次...嗯算导总是这么有逼格)
                            Complex comm = omg * a[a2];
                            a[a2] = a[a1] - comm;
                            a[a1] = a[a1] + comm;  //这两个顺序不要反了
                            omg = omg * omgn;
                        }
                    }
                }
                if(IDFT)
                    for(int i = 0; i < n; i++)
                        a[i] = a[i] / n;
            }
            void mul(FFTer &o)
            {
                int s = 1;
                while(s < n + o.n)s <<= 1;
                n = o.n = s;
                a.resize(s);
                o.a.resize(s);
    
                FFT(false);
                o.FFT(false);
                for(int i = 0; i < n; i++)
                    a[i] = a[i] * o.a[i];
                FFT(true);
            }
        };
        void us_multo(Bignum &b)
        {
            FFTer x(bits);
            FFTer y(b.bits);
            x.mul(y);
            bits.clear();
            bits.resize(x.a.size());
            for(int i = 0; i < x.n; i++)
                bits[i] = (int)(x.a[i].real+0.5);
            maintain();
        }
        void us_multo_simu(Bignum &b)
        {
            vector<int> r;
            r.resize(max(length(),b.length())<<1);
            for(int i = 0; i < length(); i++)
                for(int j = 0; j < b.length(); j++)
                    r[i+j] += bits[i] * b.bits[j];
            *(&(this -> bits)) = r;
            maintain();
        }
        void us_subto(Bignum &b) // abs(self) >= abs(other)
        {
            int mlen = length();
            int olen = b.length();
            for(int i = 0; i < mlen; i++)
            {
                int s = bits[i];
                if(i < olen)s -= b.bits[i];
                bits[i] = s;
                if(bits[i] < 0)
                {
                    bits[i] += 10;
                    bits[i+1] -= 1;
                }
            }
            for(int i = bits.size() - 1; !bits[i] && i >= 1; i--)bits.pop_back();
            if(bits.size() == 1 && bits[0] == 0)sign = 0;
        }
        void us_divto(Bignum &b)
        {
            if(length() == 1 && bits[0] == 0)return;
            Bignum L("0");
            L.sign = 0;
            Bignum R(*this);
            R.sign = 0;
            Bignum two("2");
            R *= two;
            Bignum one("1");
            one.sign = 0;
            while(L + one != R)
            {
                Bignum M = L+R;
                M.divto2();
                Bignum t = M*b;
                if(t > *this)
                {
                    R = M;
                }else if(t < *this)
                {
                    L = M;
                }else
                {
                    *this = M;
                    L = M;
                    break;
                }
            }
            *this = L;
        }
    public:
        int sign;
        vector<int> bits;
        int length()
        {
            return bits.size();
        }
        void maintain()
        {
            for(int i = 0; i < bits.size(); i++)
            {
                if(i + 1 < bits.size())
                    bits[i+1] += bits[i]/10;
                else if(bits[i] > 9)
                    bits.push_back(bits[i]/10);
                bits[i] %= 10;
            }
            if(bits.size() == 0)
            {
                bits.push_back(0);
                sign = 0;
            }
            for(int i = bits.size() - 1; !bits[i] && i >= 1; i--)bits.pop_back();
        }
    
        Bignum(string &s)
        {
            Bignum();
            mknum(s);
        }
        Bignum(const char *s)
        {
            Bignum();
            mknum(s);
        }
        Bignum(int n)
        {
            Bignum();
            char buf[15];
            sprintf(buf, "%d", n);
            mknum(buf);
        }
        Bignum()
        {
            sign = 0;
            bits.push_back(0);
        }
        Bignum(const Bignum& b) 
        {
            copy(b);
        }
        void copy(const Bignum& b)
        {
            sign = b.sign;
            bits = b.bits;
        }
    
    // ------------------------------------------
        bool us_cmp(Bignum &b)   //无符号的比较
        {
            if(length() != b.length())return false;
            int l = length();
            for(int i = 0; i < l; i++)
                if(bits[i] != b.bits[i])
                    return false;
            return true;
        }
        bool us_larger(Bignum &b)
        {
            if(length() > b.length())return true;
            else if(length() < b.length())return false;
            int l = length();
            for(int i = l-1; i >= 0; i--)
                if(bits[i] > b.bits[i])
                    return true;
                else if(bits[i] < b.bits[i])
                    return false;
            return false;
        }
        bool operator== (Bignum &o)
        {
            if(sign != o.sign)
                return false;
            return us_cmp(o);
        }
        bool operator!= (Bignum &o)
        {
            return !(*this == o);
        }
        bool operator> (Bignum &o)
        {
            if(sign == 0 && o.sign == 1)return true;
            if(sign == 1 && o.sign == 0)return false;
            if(sign == o.sign && sign)return !us_larger(o);
            return us_larger(o);
        }
        bool operator< (Bignum &o)
        {
            return !(*this == o || *this > o);   //小于就是不等于也不大于 
        }
        bool operator<= (Bignum &o)
        {
            return *this < o || *this == o;
        }
        bool operator>= (Bignum &o)
        {
            return *this > o || *this == o;
        }
    
    // -------------------------------
        Bignum& operator+= (Bignum &o)
        {
            if(!sign && !o.sign)
            {
                us_addto(o);
                sign = 0;
            }
            else if(sign && o.sign)
            {
                us_addto(o);
                sign = 1;
            }
            else if(sign && !o.sign)
            {
                if(o.us_larger(*this))
                {
                    Bignum t(o);
                    t.us_subto(*this);
                    *this = t;
                    sign = 0;
                }else
                {
                    us_subto(o);
                    sign = 1;
                    if(bits.size() == 1 && bits[0] == 0)sign = 0;
                }
            }else if(!sign && o.sign)
            {
                if(us_larger(o))
                {
                    us_subto(o);
                    sign = 0;
                }else
                {
                    Bignum t(o);
                    t.us_subto(*this);
                    *this = t;
                    sign = 1;
                    if(bits.size() == 1 && bits[0] == 0)sign = 0;
                }
            }
            return *this;
        }
        Bignum operator+ (Bignum &o)
        {
            Bignum t(*this);
            t += o;
            return t;
        }
    
    // ------------------------------
        Bignum& operator*= (Bignum &o)
        {
            if(length() + o.length() > 800)
                us_multo(o);                 //FFT
            else
                us_multo_simu(o);             //simulate
            if(sign == o.sign)sign = 0;
            else sign = 1;
            return *this;
        }
        Bignum operator* (Bignum &o)
        {
            Bignum t(*this);
            t *= o;
            return t;
        }
    // -------------------------------
        Bignum& operator-= (Bignum &o)
        {
            if(!sign && !o.sign) 
            {
                if(us_larger(o))
                {
                    us_subto(o);
                    sign = 0;
                }
                else
                {
                    Bignum t(o);
                    t.us_subto(*this);
                    *this = t;
                    sign = 1;
                    if(bits.size() == 1 && bits[0] == 0)sign = 0;
                }
            }else if(sign && o.sign)
            {
                if(us_larger(o))
                {
                    us_subto(o);
                    sign = 1;
                    if(bits.size() == 1 && bits[0] == 0)sign = 0;
                }else
                {
                    Bignum t(o);
                    t.us_subto(*this);
                    *this = t;
                    sign = 0;
                }
            }else if(!sign && o.sign)
            {
                us_addto(o);
                sign = 0;
            }else if(sign && !o.sign)
            {
                us_addto(o);
                sign = 1;
            }
            return *this;
        }
        Bignum operator- (Bignum &o)
        {
            Bignum t(*this);
            t -= o;
            return t;
        }
    // ---------------------------------
        Bignum& divto2()
        {
            if(!bits.size())return *this;
            bits[0] >>= 1;
            int i;
            for(i = 1; i < bits.size(); i++)
            {
                if(bits[i] & 1)bits[i-1] += 5;
                bits[i] >>= 1;
            }
            if(bits[i-1] == 0)bits.pop_back();
            return *this;
        }
        Bignum& operator/= (Bignum &o)
        {
            us_divto(o);
            if(sign == o.sign)sign = 0;
            else sign = 1;
            return *this;
        }
        Bignum operator/ (Bignum &o)
        {
            Bignum t(*this);
            t /= o;
            return t;
        }
    // ---------------------------------
        Bignum abs()
        {
            Bignum t(*this);
            t.sign = 0;
            return t;
        }
    
    
        Bignum sqrt()
        {
            Bignum L("0"), R(*this);
            Bignum one("1");
            Bignum m, t;
            while(L + one != R)
            {
                m = L+R;
                m.divto2();
                Bignum t = m*m;
                if(t == *this)return m;
                else if(t > *this)R = m;
                else L = m;
            }
            return L;
        }
    
        //若e <= 0则会返回1
        //底数(也就是this)是负数的话会根据次数决定符号
        Bignum pow(Bignum &e)
        {
            if(e.sign)return 1;
            Bignum ans("1");
            Bignum base(*this);
            Bignum zero("0");
            Bignum exp(e);
            while(exp > zero)
            {
                if(exp.bits[0] & 1)
                {
                    ans *= base;
                }
                base *= base;
                exp.divto2();
            }
            if(sign && e.bits[0] & 1)ans.sign = 1;
            return ans;
        }
    
        //注意,如果本数小于底数返回1...
        Bignum log(Bignum &base)
        {
            if(sign)return 0;
            if(length() == 1 && bits[0] == 1)return 0;
            if(*this <= base)return 1;
            Bignum one("1");
    
            Bignum r("1");
            Bignum c("0");
            while(r < *this)
            {
                r *= base;
                c += one;
            }
            if(r != *this)c -= one; 
            return c;
        }
        Bignum lg()
        {
            Bignum ten("10");
            return log(ten);
        }
    
        Bignum factorial()
        {
            Bignum r("1");
            Bignum zero("0");
            Bignum one("1");
            Bignum t(*this);
            while(t > zero)
            {
                r *= t;
                t -= one;
            }
            return r;
        }
    
    // -----------------------------------    
        friend istream& operator>>(istream &is, Bignum &b)
        {
            string s;
            is >> s;
            b.mknum(s);
            return is;
        }
        friend ostream& operator<<(ostream &os, Bignum b)
        {
            if(b.sign)os << '-';
            for(int i = b.bits.size()-1; i >= 0; i--)os << b.bits[i];
            return os;
        }
    
        string to_string()
        {
            int sz = length();
            string s;
            if(sign)
                s.resize(sz+1);
            else
                s.resize(sz);
            int i = 0;
            if(sign)s[i++] = '-';
            for(int j = sz-1; i < sz+sign; i++, j--)
                s[i] = bits[j] + '0';
            return s;
        }    
    
    };
        // --
    #ifdef BIGNUM_DEBUG
        #ifdef __GNUC__ 
        __attribute__((noinline))     //禁止内联
        #endif
        #ifdef __MINGW32__
        __attribute__((noinline))
        #endif
        char* printB(Bignum &b)
        {
             //仅仅是用于能在gdb中使用它来输出自己 
            string s = b.to_string();
            char *buf = (char *)malloc(sizeof(char) * s.length());
                            //这个函数仅用于调试,这里申请的内存不会释放
                            //因此非调试时不要使用这个函数
            strcpy(buf, s.c_str());
            return buf;  //然后gdb中就可以 print printB(一个Bignum )
        }
    #endif
    
    int main()
    {
    
        return 0;
    }





    2更简短的模板

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <string>
    #include <algorithm>
    using namespace std;
    
    const int MAXN = 410;
    
    struct bign
    {
        int len, s[MAXN];
        bign ()
        {
            memset(s, 0, sizeof(s));
            len = 1;
        }
        bign (int num) { *this = num; }
        bign (const char *num) { *this = num; }
        bign operator = (const int num)
        {
            char s[MAXN];
            sprintf(s, "%d", num);
            *this = s;
            return *this;
        }
        bign operator = (const char *num)
        {
            for(int i = 0; num[i] == '0'; num++) ;  //去前导0
            len = strlen(num);
            for(int i = 0; i < len; i++) s[i] = num[len-i-1] - '0';
            return *this;
        }
        bign operator + (const bign &b) const //+
        {
            bign c;
            c.len = 0;
            for(int i = 0, g = 0; g || i < max(len, b.len); i++)
            {
                int x = g;
                if(i < len) x += s[i];
                if(i < b.len) x += b.s[i];
                c.s[c.len++] = x % 10;
                g = x / 10;
            }
            return c;
        }
        bign operator += (const bign &b)
        {
            *this = *this + b;
            return *this;
        }
        void clean()
        {
            while(len > 1 && !s[len-1]) len--;
        }
        bign operator * (const bign &b) //*
        {
            bign c;
            c.len = len + b.len;
            for(int i = 0; i < len; i++)
            {
                for(int j = 0; j < b.len; j++)
                {
                    c.s[i+j] += s[i] * b.s[j];
                }
            }
            for(int i = 0; i < c.len; i++)
            {
                c.s[i+1] += c.s[i]/10;
                c.s[i] %= 10;
            }
            c.clean();
            return c;
        }
        bign operator *= (const bign &b)
        {
            *this = *this * b;
            return *this;
        }
        bign operator - (const bign &b)
        {
            bign c;
            c.len = 0;
            for(int i = 0, g = 0; i < len; i++)
            {
                int x = s[i] - g;
                if(i < b.len) x -= b.s[i];
                if(x >= 0) g = 0;
                else
                {
                    g = 1;
                    x += 10;
                }
                c.s[c.len++] = x;
            }
            c.clean();
            return c;
        }
        bign operator -= (const bign &b)
        {
            *this = *this - b;
            return *this;
        }
        bign operator / (const bign &b)
        {
            bign c, f = 0;
            for(int i = len-1; i >= 0; i--)
            {
                f = f*10;
                f.s[0] = s[i];
                while(f >= b)
                {
                    f -= b;
                    c.s[i]++;
                }
            }
            c.len = len;
            c.clean();
            return c;
        }
        bign operator /= (const bign &b)
        {
            *this  = *this / b;
            return *this;
        }
        bign operator % (const bign &b)
        {
            bign r = *this / b;
            r = *this - r*b;
            return r;
        }
        bign operator %= (const bign &b)
        {
            *this = *this % b;
            return *this;
        }
        bool operator < (const bign &b)
        {
            if(len != b.len) return len < b.len;
            for(int i = len-1; i >= 0; i--)
            {
                if(s[i] != b.s[i]) return s[i] < b.s[i];
            }
            return false;
        }
        bool operator > (const bign &b)
        {
            if(len != b.len) return len > b.len;
            for(int i = len-1; i >= 0; i--)
            {
                if(s[i] != b.s[i]) return s[i] > b.s[i];
            }
            return false;
        }
        bool operator == (const bign &b)
        {
            return !(*this > b) && !(*this < b);
        }
        bool operator != (const bign &b)
        {
            return !(*this == b);
        }
        bool operator <= (const bign &b)
        {
            return *this < b || *this == b;
        }
        bool operator >= (const bign &b)
        {
            return *this > b || *this == b;
        }
        string str() const
        {
            string res = "";
            for(int i = 0; i < len; i++) res = char(s[i]+'0') + res;
            return res;
        }
    };
    
    istream& operator >> (istream &in, bign &x)
    {
        string s;
        in >> s;
        x = s.c_str();
        return in;
    }
    
    ostream& operator << (ostream &out, const bign &x)
    {
        out << x.str();
        return out;
    }
    
    int main()
    {
        bign a, b, c, d, e, f, g;
        while(cin>>a>>b)
        {
            a.clean(), b.clean();
            c = a+b;
            d = a-b;
            e = a*b;
            f = a/b;
            g = a%b;
            cout<<"a+b"<<"="<<c<<endl; // a += b
            cout<<"a-b"<<"="<<d<<endl; // a -= b;
            cout<<"a*b"<<"="<<e<<endl; // a *= b;
            cout<<"a/b"<<"="<<f<<endl; // a /= b;
            cout<<"a%b"<<"="<<g<<endl; // a %= b;
            if(a != b) printf("YES
    ");
            else printf("NO
    ");
        }
        return 0;
    }

     3

    #include<iostream> 
    #include<string> 
    #include<iomanip> 
    #include<algorithm> 
    using namespace std; 
    
    #define MAXN 9999
    #define MAXSIZE 10
    #define DLEN 4
    
    class BigNum
    { 
    private: 
        int a[500];    //可以控制大数的位数 
        int len;       //大数长度
    public: 
        BigNum(){ len = 1;memset(a,0,sizeof(a)); }   //构造函数
        BigNum(const int);       //将一个int类型的变量转化为大数
        BigNum(const char*);     //将一个字符串类型的变量转化为大数
        BigNum(const BigNum &);  //拷贝构造函数
        BigNum &operator=(const BigNum &);   //重载赋值运算符,大数之间进行赋值运算
    
        friend istream& operator>>(istream&,  BigNum&);   //重载输入运算符
        friend ostream& operator<<(ostream&,  BigNum&);   //重载输出运算符
    
        BigNum operator+(const BigNum &) const;   //重载加法运算符,两个大数之间的相加运算 
        BigNum operator-(const BigNum &) const;   //重载减法运算符,两个大数之间的相减运算 
        BigNum operator*(const BigNum &) const;   //重载乘法运算符,两个大数之间的相乘运算 
        BigNum operator/(const int   &) const;    //重载除法运算符,大数对一个整数进行相除运算
    
        BigNum operator^(const int  &) const;    //大数的n次方运算
        int    operator%(const int  &) const;    //大数对一个int类型的变量进行取模运算    
        bool   operator>(const BigNum & T)const;   //大数和另一个大数的大小比较
        bool   operator>(const int & t)const;      //大数和一个int类型的变量的大小比较
    
        void print();       //输出大数
    }; 
    BigNum::BigNum(const int b)     //将一个int类型的变量转化为大数
    { 
        int c,d = b;
        len = 0;
        memset(a,0,sizeof(a));
        while(d > MAXN)
        {
            c = d - (d / (MAXN + 1)) * (MAXN + 1); 
            d = d / (MAXN + 1);
            a[len++] = c;
        }
        a[len++] = d;
    }
    BigNum::BigNum(const char*s)     //将一个字符串类型的变量转化为大数
    {
        int t,k,index,l,i;
        memset(a,0,sizeof(a));
        l=strlen(s);   
        len=l/DLEN;
        if(l%DLEN)
            len++;
        index=0;
        for(i=l-1;i>=0;i-=DLEN)
        {
            t=0;
            k=i-DLEN+1;
            if(k<0)
                k=0;
            for(int j=k;j<=i;j++)
                t=t*10+s[j]-'0';
            a[index++]=t;
        }
    }
    BigNum::BigNum(const BigNum & T) : len(T.len)  //拷贝构造函数
    { 
        int i; 
        memset(a,0,sizeof(a)); 
        for(i = 0 ; i < len ; i++)
            a[i] = T.a[i]; 
    } 
    BigNum & BigNum::operator=(const BigNum & n)   //重载赋值运算符,大数之间进行赋值运算
    {
        int i;
        len = n.len;
        memset(a,0,sizeof(a)); 
        for(i = 0 ; i < len ; i++) 
            a[i] = n.a[i]; 
        return *this; 
    }
    istream& operator>>(istream & in,  BigNum & b)   //重载输入运算符
    {
        char ch[MAXSIZE*4];
        int i = -1;
        in>>ch;
        int l=strlen(ch);
        int count=0,sum=0;
        for(i=l-1;i>=0;)
        {
            sum = 0;
            int t=1;
            for(int j=0;j<4&&i>=0;j++,i--,t*=10)
            {
                sum+=(ch[i]-'0')*t;
            }
            b.a[count]=sum;
            count++;
        }
        b.len =count++;
        return in;
    
    }
    ostream& operator<<(ostream& out,  BigNum& b)   //重载输出运算符
    {
        int i;  
        cout << b.a[b.len - 1]; 
        for(i = b.len - 2 ; i >= 0 ; i--)
        { 
            cout.width(DLEN); 
            cout.fill('0'); 
            cout << b.a[i]; 
        } 
        return out;
    }
    
    BigNum BigNum::operator+(const BigNum & T) const   //两个大数之间的相加运算
    {
        BigNum t(*this);
        int i,big;      //位数   
        big = T.len > len ? T.len : len; 
        for(i = 0 ; i < big ; i++) 
        { 
            t.a[i] +=T.a[i]; 
            if(t.a[i] > MAXN) 
            { 
                t.a[i + 1]++; 
                t.a[i] -=MAXN+1; 
            } 
        } 
        if(t.a[big] != 0)
            t.len = big + 1; 
        else
            t.len = big;   
        return t;
    }
    BigNum BigNum::operator-(const BigNum & T) const   //两个大数之间的相减运算 
    {  
        int i,j,big;
        bool flag;
        BigNum t1,t2;
        if(*this>T)
        {
            t1=*this;
            t2=T;
            flag=0;
        }
        else
        {
            t1=T;
            t2=*this;
            flag=1;
        }
        big=t1.len;
        for(i = 0 ; i < big ; i++)
        {
            if(t1.a[i] < t2.a[i])
            { 
                j = i + 1; 
                while(t1.a[j] == 0)
                    j++; 
                t1.a[j--]--; 
                while(j > i)
                    t1.a[j--] += MAXN;
                t1.a[i] += MAXN + 1 - t2.a[i]; 
            } 
            else
                t1.a[i] -= t2.a[i];
        }
        t1.len = big;
        while(t1.a[len - 1] == 0 && t1.len > 1)
        {
            t1.len--; 
            big--;
        }
        if(flag)
            t1.a[big-1]=0-t1.a[big-1];
        return t1; 
    } 
    
    BigNum BigNum::operator*(const BigNum & T) const   //两个大数之间的相乘运算 
    { 
        BigNum ret; 
        int i,j,up; 
        int temp,temp1;   
        for(i = 0 ; i < len ; i++)
        { 
            up = 0; 
            for(j = 0 ; j < T.len ; j++)
            { 
                temp = a[i] * T.a[j] + ret.a[i + j] + up; 
                if(temp > MAXN)
                { 
                    temp1 = temp - temp / (MAXN + 1) * (MAXN + 1); 
                    up = temp / (MAXN + 1); 
                    ret.a[i + j] = temp1; 
                } 
                else
                { 
                    up = 0; 
                    ret.a[i + j] = temp; 
                } 
            } 
            if(up != 0) 
                ret.a[i + j] = up; 
        } 
        ret.len = i + j; 
        while(ret.a[ret.len - 1] == 0 && ret.len > 1)
            ret.len--; 
        return ret; 
    } 
    BigNum BigNum::operator/(const int & b) const   //大数对一个整数进行相除运算
    { 
        BigNum ret; 
        int i,down = 0;   
        for(i = len - 1 ; i >= 0 ; i--)
        { 
            ret.a[i] = (a[i] + down * (MAXN + 1)) / b; 
            down = a[i] + down * (MAXN + 1) - ret.a[i] * b; 
        } 
        ret.len = len; 
        while(ret.a[ret.len - 1] == 0 && ret.len > 1)
            ret.len--; 
        return ret; 
    }
    int BigNum::operator %(const int & b) const    //大数对一个int类型的变量进行取模运算    
    {
        int i,d=0;
        for (i = len-1; i>=0; i--)
        {
            d = ((d * (MAXN+1))% b + a[i])% b;  
        }
        return d;
    }
    BigNum BigNum::operator^(const int & n) const    //大数的n次方运算
    {
        BigNum t,ret(1);
        int i;
        if(n<0)
            exit(-1);
        if(n==0)
            return 1;
        if(n==1)
            return *this;
        int m=n;
        while(m>1)
        {
            t=*this;
            for( i=1;i<<1<=m;i<<=1)
            {
                t=t*t;
            }
            m-=i;
            ret=ret*t;
            if(m==1)
                ret=ret*(*this);
        }
        return ret;
    }
    bool BigNum::operator>(const BigNum & T) const   //大数和另一个大数的大小比较
    { 
        int ln; 
        if(len > T.len)
            return true; 
        else if(len == T.len)
        { 
            ln = len - 1; 
            while(a[ln] == T.a[ln] && ln >= 0)
                ln--; 
            if(ln >= 0 && a[ln] > T.a[ln])
                return true; 
            else
                return false; 
        } 
        else
            return false; 
    }
    bool BigNum::operator >(const int & t) const    //大数和一个int类型的变量的大小比较
    {
        BigNum b(t);
        return *this>b;
    }
    
    void BigNum::print()    //输出大数
    { 
        int i;   
        cout << a[len - 1]; 
        for(i = len - 2 ; i >= 0 ; i--)
        { 
            cout.width(DLEN); 
            cout.fill('0'); 
            cout << a[i]; 
        } 
        cout << endl;
    }
    int main()
    {
        int i,n;
        BigNum x[101];      //定义大数的对象数组
        x[0]=1;
        for(i=1;i<101;i++)
            x[i]=x[i-1]*(4*i-2)/(i+1);
        while(scanf("%d",&n)==1 && n!=-1)
        {
            x[n].print();
        }
    }

    4

    #include<stdio.h>
    #include<iostream>
    #include<string>
    #include<string.h>
    #include<algorithm>
    const int ten[4]={1,10,100,1000}; 
    const int maxl=1050;
    using namespace std;
    char tmp[maxl*4];
    struct BigNumber{//只进行整数操作,如果有负数需要特判 ,除法太麻烦我暂时没看懂.. 
        int d[maxl];
        BigNumber(string s){//读入一个字符串(待求数) 
            int len=s.size();//深度 
            d[0]=(len-1)/4+1;
            int i,j,k;
            for(i=1;i<maxl;++i)d[i]=0;//初始化 
            for(i=len-1;i>=0;--i){
                j=(len-i-1)/4+1;
                k=(len-i-1)%4;//每四位算一个数 
                d[j]+=ten[k]*(s[i]-'0');
            }
            while(d[0]>1 && d[d[0]]==0)--d[0];//得到缩位后的位数 
        }
        BigNumber(){//不知道用来初始化this指针干什么..
            *this=BigNumber(string("0"));
        } 
        string toString(){//转换为string类型(可以直接输出)
            string s(""); 
            int i,j,temp;
            for(i=3;i>=1;--i)if(d[d[0]]>=ten[i])break;//找到最后位置如果大于10就对最后位置进行操作 
            temp=d[d[0]];
            for(j=i;j>=0;--j){
                s=s+char(temp/ten[j]+'0');//其实是相当于把最高位放在第一位
                temp%=ten[j]; 
            } 
            for(i=d[0]-1;i>0;--i){
                temp=d[i];
                for(j=3;j>=0;--j){
                    s=s+(char)(temp/ten[j]+'0');
                    temp%=ten[j];
                }
            }
            return s;
        } 
        bool operator <(const BigNumber &b){//比较 
            if(d[0]!=b.d[0])return d[0]<b.d[0];//如果返回位数小的为小的 
            int i;
            for(i=d[0];i>0;--i){
                if(d[i]!=b.d[i]){//逐四位比较 
                    return d[i]<b.d[i];
                }
            }
            return false;//如果等于,那就是不小于 
        }
        BigNumber operator +(const BigNumber &b){//加法 
            BigNumber c;
            c.d[0]=max(d[0],b.d[0]);
            int i,x=0;
            for(i=1;i<=c.d[0];++i){//取最大位数 
                x=d[i]+b.d[i]+x;//四位相加 
                c.d[i]=x%10000;//相加超过10000了就减去10000,为当前四位的值 
                x/=10000;//多出来的x继承到下一次循环 
            }
            while(x!=0){//如果超过两个数的位数 
                c.d[++c.d[0]]=x%10000;
                x/=10000; 
            }
            return c;
        }
        BigNumber operator -(const BigNumber &b){//减法 
            BigNumber c;
            c.d[0]=d[0];
            int i,x=0;
            for(i=1;i<=c.d[0];++i){
                x=10000+d[i]-b.d[i]+x;//先加上10000防止出现负数,相当于借位 
                c.d[i]=x%10000;//得到当前位实际值 
                x=x/10000-1;//因为一开始加了10000所以要减去1,即下一部减去借的那一位 
            } 
            while((c.d[0]>1)&&(c.d[c.d[0]]==0))--c.d[0];//减去后可能有多位为空,最大位-- 
            return c; 
        }
        BigNumber operator *(const BigNumber &b){//乘法 
            BigNumber c;
            c.d[0]=d[0]+b.d[0];
            int i,j,x;
            for(i=1;i<=d[0];++i){//逐四位相乘 
                x=0;
                for(j=1;j<=b.d[0];++j){//这两个的乘积假定全部在i+j-1的位置
                    x=d[i]*b.d[j]+x+c.d[i+j-1];//对这一位操作时除了本身之外还要加上原来这一位的值 
                    c.d[i+j-1]=x%10000;//对位进行再运算 
                    x/=10000; //计算乘法超额部分 
                }
                c.d[i+b.d[0]]=x;//超额部分实际上为b的最大位的下一位(x每次除以10000之后得到的) 
            }
            while((c.d[0]>1)&&(c.d[c.d[0]]==0))--c.d[0];//前面的c.d[0]开的可能会比较大 
            return c;
        }
        BigNumber operator *(const int &k){//乘常数
            BigNumber c;
            c.d[0]=d[0];
            int i,x=0;
            for(i=1;i<=d[0];++i){
                x=d[i]*k+x;
                c.d[i]=x%10000;
                x/=10000;
            } 
            while(x>0){
                c.d[++c.d[0]]=x%10000;
                x/=10000;
            }
            while((c.d[0]>1)&&(c.d[c.d[0]]==0))--c.d[0];
            return c;
        }
        bool operator ==(const BigNumber &b){//判断是否相等 
            if(d[0]!=b.d[0])return false;
            for(int i=1;i<=d[0];++i)if(d[i]!=b.d[i])return false;
            return true; 
        }
    };
    string getnum(){
        string s;
        char tmp=getchar();
        while(tmp>='0'&&tmp<='9'){
            s=s+tmp;
            tmp=getchar();
        }
        return s;
    }
    int main(){
        BigNumber a,b,c;
        a=BigNumber(getnum());
        b=BigNumber(getnum());
        c=a*b;
        cout<<(string)c.toString();
        return 0;
    } 

     更多参见http://www.mamicode.com/info-detail-454902.html 

  • 相关阅读:
    根据第三方提供的wsdl报文(axis2开发),进行的webservice应用的开发实例
    调用axis2开发的接口遇到的问题
    使用 DJ Java Decompiler 将整个jar包反编译成源文件
    解析Myeclipse项目下的.classpath文件
    使用cxf开发webservice应用时抛出异常
    hibernate 映射 多对一
    jquery获取元素的值,获取当前对象的父对象等等
    web项目中加入struts2、spring的支持,并整合两者
    Struts2中的 配置文件
    对list集合中的对象按照对象的某一属性进行排序
  • 原文地址:https://www.cnblogs.com/bennettz/p/6480791.html
Copyright © 2020-2023  润新知