github: https://github.com/devernay/cminpack
主页: http://devernay.github.io/cminpack/
使用手册: http://devernay.github.io/cminpack/man.html
CMinpack配置
从github中clone下来源文件,进入目录后新建build,使用cmake对上一层目录内容进行编译configure->generate。
命令行不熟练可以使用cmake-gui指令,需要选中examples选项才会对样例进行编译。
完成后进入build/examples目录,执行make命令,可以看到已经生成可执行文件,运行其中任意程序进行测试。
再进入到build/cmake目录,执行make命令和make install命令,将cminpack.pc安装到指定目录(我的电脑上安装到了/usr/local/lib64/pkgconfig),最后将这个目录通过/etc/profile添加到pkg的路径当中(别忘了source运行一下)。
在命令行中输入pkg-config opencv –libs –cflags
,如果能够显示路径则成功。
[NOTE] 我对pkg-config的使用并不是很了解,是模仿着opencv进行配置的。
CMake相关详解
[NOTE] 因此自己对CMake使用还很不熟练,因此找机会对CMakeList.txt进行学习。
${CMINPACK_SOURCE_DIR}/CMakeList.txt
# 因为Markdown没有支持CMakeList.txt的高亮,因此用Makefile的高亮将就一下。
# The name of our project is "CMINPACK". CMakeLists files in this project can
# refer to the root source directory of the project as ${CMINPACK_SOURCE_DIR} and
# to the root binary directory of the project as ${CMINPACK_BINARY_DIR}.
# CMINPACK_SOURCE_DIR: CMinpack源代码的根目录
# CMINPACK_BINARY_DIR: CMinpack二进制文件的根目录
# 要求的最小CMake版本号
cmake_minimum_required (VERSION 2.6)
# 项目名称:CMINPACK
project (CMINPACK)
# PROJECT_NAME: CMINPACK
# PROJECT_NAME_LOWER: cminpack
string(TOLOWER ${PROJECT_NAME} PROJECT_NAME_LOWER)
# include其他CMake命令
# 在cminpack_utils.cmake这个文件中定义了GET_OS_INFO和DISSECT_VERSION两个宏指令,后面进行详细介绍。
include(${PROJECT_SOURCE_DIR}/cmake/cminpack_utils.cmake)
# Set version and OS-specific settings
# CACHE: 缓存到本地文件
set(CMINPACK_VERSION 1.3.6 CACHE STRING "CMinpack version")
set(CMINPACK_SOVERSION 1 CACHE STRING "CMinpack API version")
# 在cminpack_utils.cmake中定义的两个宏
DISSECT_VERSION()
GET_OS_INFO()
# Add an "uninstall" target
# CONFIGURE_FILE: 让普通文件也能使用CMake中的变量
# 输入文件: uninstall_target.cmake.in
# 输出文件: uninstall_target.cmake
# IMMEDIATE: 暂时没找到意思
# @ONLY: 限制只替换被@VAR@引用的变量(${VAR}格式的变量不会被替换)
CONFIGURE_FILE ("${PROJECT_SOURCE_DIR}/cmake/uninstall_target.cmake.in" "${PROJECT_BINARY_DIR}/uninstall_target.cmake" IMMEDIATE @ONLY)
# ADD_CUSTOM_TARGET: 增加一个没有输出的目标,使得它总是被构建
# CMAKE_COMMAND: 指向CMake可执行文件的完整路径
ADD_CUSTOM_TARGET (uninstall "${CMAKE_COMMAND}" -P "${PROJECT_BINARY_DIR}/uninstall_target.cmake")
# 需要注意,ctest期望在build目录下找到测试文件。
enable_testing()
if (OS_LINUX OR ${CMAKE_SYSTEM_NAME} STREQUAL "FreeBSD")
option (USE_FPIC "Use the -fPIC compiler flag." ON)
else (OS_LINUX)
option (USE_FPIC "Use the -fPIC compiler flag." OFF)
endif (OS_LINUX)
# 生成SHARED库的选项
option (BUILD_SHARED_LIBS "Build shared libraries instead of static." OFF)
if (BUILD_SHARED_LIBS)
message (STATUS "Building shared libraries.")
else ()
message (STATUS "Building static libraries.")
set(CMAKE_RELEASE_POSTFIX _s)
set(CMAKE_RELWITHDEBINFO_POSTFIX _s)
set(CMAKE_DEBUG_POSTFIX _s)
set(CMAKE_MINSIZEREL_POSTFIX _s)
if(WIN32)
add_definitions(-DCMINPACK_NO_DLL)
endif(WIN32)
endif ()
option(USE_BLAS "Compile cminpack using a blas library if possible" ON)
#set(CMAKE_INSTALL_PREFIX ${PROJECT_SOURCE_DIR}/../build)
# 添加头文件目录
if(NOT "${CMAKE_PREFIX_PATH}" STREQUAL "")
include_directories(${CMAKE_PREFIX_PATH}/include)
endif()
# cminpack_srcs: 源代码文件
set (cminpack_srcs
cminpack.h cminpackP.h
chkder.c enorm.c hybrd1.c hybrj.c lmdif1.c lmstr1.c qrfac.c r1updt.c
dogleg.c fdjac1.c hybrd.c lmder1.c lmdif.c lmstr.c qrsolv.c rwupdt.c
dpmpar.c fdjac2.c hybrj1.c lmder.c lmpar.c qform.c r1mpyq.c covar.c covar1.c
minpack.h
chkder_.c enorm_.c hybrd1_.c hybrj_.c lmdif1_.c lmstr1_.c qrfac_.c r1updt_.c
dogleg_.c fdjac1_.c hybrd_.c lmder1_.c lmdif_.c lmstr_.c qrsolv_.c rwupdt_.c
dpmpar_.c fdjac2_.c hybrj1_.c lmder_.c lmpar_.c qform_.c r1mpyq_.c covar_.c
)
# cminpack_hdrs: 头文件
set (cminpack_hdrs
cminpack.h minpack.h)
# 添加一个名为cminpack的库
add_library (cminpack ${cminpack_srcs})
if (${CMAKE_SYSTEM_NAME} STREQUAL "FreeBSD")
TARGET_LINK_LIBRARIES(cminpack m)
endif()
# Link with a BLAS library if requested
if (USE_BLAS)
if (NOT BUILD_SHARED_LIBS)
set(BLA_STATIC True)
endif()
find_package(BLAS)
if (BLAS_FOUND)
target_link_libraries(cminpack PUBLIC ${BLAS_LIBRARIES})
set_target_properties(cminpack PROPERTIES LINK_FLAGS "${BLAS_LINKER_FLAGS}")
target_compile_definitions(cminpack PUBLIC -DUSE_CBLAS)
endif()
endif()
# install: 为工程生成安装规则
# TARGETS版本的install命令
install (TARGETS cminpack
# 模块库
LIBRARY DESTINATION ${CMINPACK_LIB_INSTALL_DIR} COMPONENT library
# 静态链接的库文件
ARCHIVE DESTINATION ${CMINPACK_LIB_INSTALL_DIR} COMPONENT library
# 动态库
RUNTIME DESTINATION bin COMPONENT library)
# FILES版本的install命令
# 以相对路径方式给出的文件名是相对当前源代码路径而言的,默认具有OWNER_WRITE, OWNER_READ, GROUP_READ和WORLD_READ权限
install (FILES ${cminpack_hdrs} DESTINATION ${CMINPACK_INCLUDE_INSTALL_DIR}
COMPONENT cminpack_hdrs)
if (USE_FPIC AND NOT BUILD_SHARED_LIBS)
set_target_properties (cminpack PROPERTIES COMPILE_FLAGS -fPIC)
endif ()
set_target_properties(cminpack PROPERTIES VERSION ${CMINPACK_VERSION} SOVERSION ${CMINPACK_SOVERSION})
# add_subdirectory: 添加子项目
add_subdirectory (cmake)
add_subdirectory (examples)
${CMINPACK_SOURCE_DIR}/cmake/cminpack_utils.cmake
# 获取系统信息,设置安装位置
macro(GET_OS_INFO)
# string(REGEX MATCH 正则表达 输出变量 )
string(REGEX MATCH "Linux" OS_LINUX ${CMAKE_SYSTEM_NAME})
string(REGEX MATCH "BSD" OS_BSD ${CMAKE_SYSTEM_NAME})
if(WIN32)
set(OS_WIN TRUE)
endif(WIN32)
if(NOT DEFINED CMINPACK_LIB_INSTALL_DIR)
set(CMINPACK_LIB_INSTALL_DIR "lib")
if(OS_LINUX)
if(${CMAKE_SYSTEM_PROCESSOR} STREQUAL "x86_64")
set(CMINPACK_LIB_INSTALL_DIR "lib64")
else(${CMAKE_SYSTEM_PROCESSOR} STREQUAL "x86_64")
set(CMINPACK_LIB_INSTALL_DIR "lib")
endif(${CMAKE_SYSTEM_PROCESSOR} STREQUAL "x86_64")
message (STATUS "Operating system is Linux")
elseif(OS_BSD)
message (STATUS "Operating system is BSD")
elseif(OS_WIN)
message (STATUS "Operating system is Windows")
else(OS_LINUX)
message (STATUS "Operating system is generic Unix")
endif(OS_LINUX)
endif(NOT DEFINED CMINPACK_LIB_INSTALL_DIR)
# 比如/usr/local/include/cminpack-1
set(CMINPACK_INCLUDE_INSTALL_DIR "include/${PROJECT_NAME_LOWER}-${CMINPACK_MAJOR_VERSION}")
endmacro(GET_OS_INFO)
# 解剖CMinpack版本号
macro(DISSECT_VERSION)
# Find version components
string(REGEX REPLACE "^([0-9]+).*" "\1"
CMINPACK_MAJOR_VERSION "${CMINPACK_VERSION}")
string(REGEX REPLACE "^[0-9]+\.([0-9]+).*" "\1"
CMINPACK_MINOR_VERSION "${CMINPACK_VERSION}")
string(REGEX REPLACE "^[0-9]+\.[0-9]+\.([0-9]+)" "\1"
CMINPACK_REVISION_VERSION ${CMINPACK_VERSION})
string(REGEX REPLACE "^[0-9]+\.[0-9]+\.[0-9]+(.*)" "\1"
CMINPACK_CANDIDATE_VERSION ${CMINPACK_VERSION})
endmacro(DISSECT_VERSION)
${CMINPACK_SOURCE_DIR}/examples/CMakeLists.txt
# 可选项
# option (选项名 "选项注释" 默认内容)
option (BUILD_EXAMPLES "Build the examples and tests." ON)
option (BUILD_EXAMPLES_FORTRAN "Build the FORTRAN examples and tests." OFF)
if (BUILD_EXAMPLES)
# Make sure the compiler can find include files from our cminpack library.
include_directories (${CMINPACK_SOURCE_DIR})
# Make sure the linker can find the cminpack library once it is built.
link_directories (${CMINPACK_BINARY_DIR})
# 设置变量内容
# set(变量 内容)
set (FPGM tchkder thybrd thybrd1 thybrj thybrj1 tlmder tlmder1 tlmdif tlmdif1 tlmstr tlmstr1)
set (CPGM ${FPGM} tfdjac2)
# cmpfile: 用于一行行地比较两个文件的异同
# cmpfiles could be used by runtest.cmake... for now it's unused
# add_executable(可执行文件名称 源文件)
add_executable (cmpfiles cmpfiles.c)
# inspired by http://www.netlib.org/clapack/clapack-3.2.1-CMAKE/TESTING/CMakeLists.txt
# except that here we have to compare the output to a reference
# 测试部分跳过不看
macro(add_minpack_test testname reference)
set(TEST_OUTPUT "${CMINPACK_BINARY_DIR}/examples/${testname}.out")
set(TEST_REFERENCE "${CMINPACK_SOURCE_DIR}/examples/ref/${reference}.ref")
get_target_property(TEST_LOC ${testname} LOCATION)
add_test(${testname} "${CMAKE_COMMAND}"
-DTEST=${TEST_LOC}
-DOUTPUT=${TEST_OUTPUT}
-DREFERENCE=${TEST_REFERENCE}
-DINTDIR=${CMAKE_CFG_INTDIR}
-P "${CMINPACK_SOURCE_DIR}/examples/runtest.cmake")
endmacro(add_minpack_test)
# 遍历处理每一个目标文件
foreach (source ${CPGM})
add_executable (${source}_ ${source}_.c)
target_link_libraries (${source}_ cminpack)
if (OS_LINUX)
target_link_libraries (${source}_ m)
endif (OS_LINUX)
add_minpack_test(${source}_ ${source}c)
add_executable (${source}c ${source}c.c)
target_link_libraries (${source}c cminpack)
if (OS_LINUX)
target_link_libraries (${source}c m)
endif (OS_LINUX)
add_minpack_test(${source}c ${source}c)
endforeach(source)
endif (BUILD_EXAMPLES)
# FORTRAN部分跳过不看
第一个CMinpack程序
根据我们阅读给出的测试样例的CMake相关文件,我们可以开始动手写自己的第一个CMinpack程序。
新建目录,目录下放着我们要运行的使用了CMinpack的程序my-cminpack-demo.c。
开始编写CMakeLists.txt文件,首先提取出我们需要的内容:
project(my-cminpack-demo)
cmake_minimum_required (VERSION 2.6)
include_directories (${CMINPACK_SOURCE_DIR})
link_directories (${CMINPACK_BINARY_DIR})
add_executable (my-cminpack-demo my-cminpack-demo.c)
target_link_libraries (my-cminpack-demo cminpack)
if (OS_LINUX)
target_link_libraries (my-cminpack-demo m)
endif (OS_LINUX)
然后新建build目录,在build目录下运行cmake ..
发现会跳出找不到sqrt函数的错误,这个我们能够一下子联想到是Linux系统下没有连接到m库文件的原因。虽然我不知道这个判断为什么无法执行,但是我们已知在Linux环境下,把它去掉。
得到最终的CMakeLists.txt:
project(my-cminpack-demo)
cmake_minimum_required (VERSION 2.6)
include_directories (${CMINPACK_SOURCE_DIR})
link_directories (${CMINPACK_BINARY_DIR})
add_executable (my-cminpack-demo my-cminpack-demo.c)
target_link_libraries (my-cminpack-demo cminpack)
target_link_libraries (my-cminpack-demo m)
虽然我们make得到可执行文件,运行后查看结果(图中我使用了tlmdif_.c作为测试)
LMDIF使用说明
包括函数名
lmdif
, lmdif1_
- 最小化非线性函数平方和
函数概要
include <minpack.h>
void lmdif1_(void (*fcn)(int *m, int *n, double *x, double *fvec, int *iflag),
int *m, int *n, double *x, double *fvec,
double *tol, int *info, int *iwa, double *wa, int *lwa);
void lmdif_(void (*fcn)(int *m, int *n, double *x, double *fvec, int *iflag),
int *m, int *n, double *x, double *fvec,
double *ftol, double *xtol, double *gtol, int *maxfev, double *epsfcn, double *diag,
int *mode, double *factor, int *nprint, int *info, int *nfev, double *fjac,
int *ldfjac, int *ipvt, double *qtf,
double *wa1, double *wa2, double *wa3, double *wa4 );
详细描述
lmdif_
的目的是最小化m个n元非线性方程的平方和,使用的方法是LM算法的改进。用户需要提供计算方程的子程序。Jacobian矩阵会通过一个前向差分(forward-difference)近似计算得到。
lmdif1_
是相同的目的,但是调用方法更简单一些。
语言备注
这些函数是通过FORTRAN写的,如果从C调用,需要记住以下几点:
- 名称重编:
- 2.95/3.0版本的g77下,所有函数以下划线结尾,后续版本可能会更改;
- 使用g77编译:
- 即使你的程序全部用C语言写成,你也需要使用gcc进行链接,因为这样它会自动导入FORTRAN库。只使用g77进行编译是最方便的(它处理C语言也是OK的);
- 通过引用调用:
- 所有函数参数都是指针;
- 列优先数组:
- z( i , j ) = z[ ( i - 1 ) + ( j - 1 ) * n
- fcn是用户提供用于计算函数的子程序。在C语言当中fcn需要如下定义:
void fcn(int m, int n, double *x, double *fvec, int *iflag) {
/* 计算函数在x点的值,通过fvec返回。*/
}
iflag的值不能被fcn所修改,除非用户想要终止lmdif
/lmdif1_
。在这个例子中iflag设置为负整数。
lmdif_和lmdif1_的共同参数
m:函数个数;
n:变量个数(n<=m)
x:长度为n的数组,设置为初始的估计解向量。输出的时候x内容为最终估计的解向量。
fvec:输出长度为m的数组,内容为最终输出x计算得到的函数解。
lmdif1_的参数
tol:作为输入,非负数。用于函数终止的条件判断:
- 平方和小于tol;
- x之间的相对误差小于tol;
info:作为输出。如果用户终止了函数的执行,info将被设置为iflag的值(负数)(详细见fcn的描述),否则,info的值如下几种情况:
- 0:输入参数不合适;
- 1:平方和的相对误差小于tol;
- 2:x之间的相对误差小于tol;
- 3:1/2两种情况同时符合;
- 4: fvec is orthogonal to the columns of the Jacobian to machine precision(这个情况是什么暂时不是很清楚)
- 5:调用fcn的次数达到了200*(n+1)次;
- 6:tol设置过小,平方和无法达到那么小;
- 7:tol设置过小,x的近似解无法优化到误差达到那么小。
iwa:长度n的工作数组;
wa:长度lwa的工作数组;
lwa:作为输入,整数,不能小于mn+5n+m;
[NOTE] 这三个输入我也不知道作用,从样例来看不需要初始化。
lmdif_的参数
暂时不用这部分,跳过。
官方样例解读
/* lmdif1 例子. */
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <minpack.h>
#define real __minpack_real__
// 用户自定义的函数f()
// real -> __cminpack_real__ -> 浮点数(double)
void fcn(const int *m, const int *n, const real *x, real *fvec, int *iflag);
int main()
{
int j, m, n, info, lwa, iwa[3], one=1;
real tol, fnorm, x[3], fvec[15], wa[75];
// 函数个数15; 变量数3
m = 15;
n = 3;
// 初始位置做粗略估计
// 1.e0 = 1.0e0 = 1.0
x[0] = 1.e0;
x[1] = 1.e0;
x[2] = 1.e0;
// 为什么要设置75?
lwa = 75;
/* set tol to the square root of the machine precision. unless high
precision solutions are required, this is the recommended
setting. */
// (建议打印一下看值是多少)
tol = sqrt(__minpack_func__(dpmpar)(&one));
// 需要注意指针
__minpack_func__(lmdif1)(&fcn, &m, &n, x, fvec, &tol, &info, iwa, wa, &lwa);
// 最终的2范数(即平方和开根号)
fnorm = __minpack_func__(enorm)(&m, fvec);
printf(" final l2 norm of the residuals%15.7g
", (double)fnorm);
printf(" exit parameter %10i
", info);
printf(" final approximate solution
");
for (j=1; j<=n; j++) {
printf("%s%15.7g", j%3==1?"
":"", (double)x[j-1]);
}
printf("
");
return 0;
}
// The problem is to determine the values of x(1), x(2), and x(3)
// which provide the best fit (in the least squares sense) of
// x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i = 1, 15
// to the data
// y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
// 0.37,0.58,0.73,0.96,1.34,2.10,4.39),
// where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
// i-th component of FVEC is thus defined by
// y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).
void fcn(const int *m, const int *n, const real *x, real *fvec, int *iflag)
{
/* function fcn for lmdif1 example */
int i;
real tmp1,tmp2,tmp3;
// 实际的y值
real y[15]={1.4e-1,1.8e-1,2.2e-1,2.5e-1,2.9e-1,3.2e-1,3.5e-1,3.9e-1,
3.7e-1,5.8e-1,7.3e-1,9.6e-1,1.34e0,2.1e0,4.39e0};
assert(*m == 15 && *n == 3);
if (*iflag == 0) {
/* insert print statements here when nprint is positive. */
/* if the nprint parameter to lmder is positive, the function is
called every nprint iterations with iflag=0, so that the
function may perform special operations, such as printing
residuals. */
// 这段没有很看懂,在??情况下打印信息
return;
}
/* compute residuals */
for (i=0; i<15; i++) {
tmp1 = i+1;
tmp2 = 15 - i;
tmp3 = tmp1;
if (i >= 8) {
tmp3 = tmp2;
}
fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
}
}
[NOTE] 其他内容有待更新