一.、介绍
SQLAlchemy是一个基于Python实现的ORM框架。该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
pip3 install sqlalchemy
- Engine,框架的引擎
- Connection Pooling ,数据库连接池
- Dialect,选择连接数据库的DB API种类
- Schema/Types,架构和类型
- SQL Exprression Language,SQL表达式语言
SQLAlchemy本身无法操作数据库,其必须依赖pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:
# MySQL-Python mysql+mysqldb://user:password@host[:port]/dbname # pymysql mysql+pymysql://username:password@host/dbname[?options] # MySQL-Connector mysql+mysqlconnector://user:password@host[:port]/dbname # cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] # 更多:http://docs.sqlalchemy.org/en/latest/dialects/index.html
二、使用
2.1 执行原生SQL语句
import threading from sqlalchemy import create_engine engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有线程最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) def task(arg): conn = engine.raw_connection() cursor = conn.cursor() cursor.execute( "select * from userinfo" ) ret = cursor.fetchall() print(ret) cursor.close() conn.close() for i in range(20): t = threading.Thread(target=task, args=(i,)) t.start()
2.2 ORM
创建数据库表
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column from sqlalchemy import Integer, String, Date, UniqueConstraint, Index from sqlalchemy import create_engine Base = declarative_base() class UserInfo(Base): __tablename__ = "UserInfo" id = Column(Integer, primary_key=True) name = Column(String(16), index=True, unique=True, nullable=False) age = Column(Integer) birthday = Column(Date) __table_args__ = ( # UniqueConstraint("id", "name", name="unic_id_name"), # 联合唯一索引 # Index("idx_age_birthday", "age", "birthday"), # 联合索引 ) def init_db(): """根据类创建数据库表""" engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) Base.metadata.create_all(engine) def drop_db(): """根据类删除数据库表""" engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, pool_size=5, pool_timeout=20, pool_recycle=-1 ) Base.metadata.drop_all(engine) if __name__ == "__main__": drop_db() init_db()
操作数据库表(简单示例)
import datetime from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from models import UserInfo engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) SessionFactory = sessionmaker(bind=engine) # 每次执行数据库操作时,都需要创建一个session session = SessionFactory() obj = UserInfo(name="pd", age=18, birthday=datetime.date.today()) session.add(obj) # 提交事务 session.commit() # 关闭session session.close()
PS:要想查看SQL语句,去掉all(),打印查询语句即可。
基本增删改查操作
import datetime from sqlalchemy import create_engine from sqlalchemy.sql import text from sqlalchemy.orm import sessionmaker from models import UserInfo engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) SessionFactory = sessionmaker(bind=engine) # 每次执行数据库操作时,都需要创建一个session session = SessionFactory() #################### 增 #################### """ # 新增单条数据 obj = UserInfo(name="pd", age=18, birthday=datetime.date.today()) session.add(obj) # 新增多条数据 session.add_all([ UserInfo(name="盲僧", age=10, birthday=datetime.date.today()), UserInfo(name="妖姬", age=20, birthday=datetime.date.today()) ]) """ #################### 删 #################### """ session.query(UserInfo).filter(UserInfo.id==1).delete() """ #################### 改 #################### """ session.query(UserInfo).filter(UserInfo.name=="pd").update({UserInfo.name: "xx"}) session.query(UserInfo).filter(UserInfo.name=="pd").update({"name": "xx"}) session.query(UserInfo).filter(UserInfo.name=="pd").update({"age": UserInfo.age+10}) session.query(UserInfo).filter(UserInfo.name=="pd").update({"name": UserInfo.name+"真帅"}, synchronize_session=False) # 连接字符串 """ #################### 查 #################### """ ret1 = session.query(UserInfo).all() ret2 = session.query(UserInfo.name.label("n"), UserInfo.age).all() # label相当于起别名 for row in ret2: print(row.n, row.age) # [('pd', 10), ('盲僧', 10), ('妖姬', 20)] ret3 = session.query(UserInfo).filter(UserInfo.age==10).all() ret4 = session.query(UserInfo).filter_by(age=10).all() ret5 = session.query(UserInfo).filter_by(age=10).first() ret6 = session.query(UserInfo).from_statement(text("select * from userinfo where name=:name")).params(name="pd").all() for row in ret3: print(row.name) """ # 提交事务(查询操作不需要) # session.commit() # 关闭session session.close()
常用操作(条件、与、或、排序、分组......)
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from models import UserInfo engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) SessionFactory = sessionmaker(bind=engine) # 每次执行数据库操作时,都需要创建一个session session = SessionFactory() #################### 指定查询哪列 #################### ret1 = session.query(UserInfo.id.label("nid"), UserInfo.name).all() for row in ret1: print(row.nid, row.name) #################### 条件 #################### ret1 = session.query(UserInfo).filter_by(name="盲僧").all() ret2 = session.query(UserInfo).filter(UserInfo.id > 1, UserInfo.name == "盲僧").all() ret3 = session.query(UserInfo).filter(UserInfo.id.between(1, 3), UserInfo.name == "盲僧").all() ret4 = session.query(UserInfo).filter(UserInfo.id.in_([1, 3])).all() # 查询id在什么范围 ret5 = session.query(UserInfo).filter(~UserInfo.id.in_([1, 3])).all() # 查询id不在什么范围 #################### 子查询 #################### ret1 = session.query(UserInfo).filter(UserInfo.id.in_(session.query(UserInfo.id).filter_by(name="劫"))).all() #################### 与、或 #################### from sqlalchemy import and_, or_ ret1 = session.query(UserInfo).filter(and_(UserInfo.id > 3, UserInfo.name == "提莫")).all() ret2 = session.query(UserInfo).filter(or_(UserInfo.id < 3, UserInfo.name == "提莫")).all() for row in ret2: print(row.name) ret3 = session.query(UserInfo).filter( or_( UserInfo.id < 3, and_(UserInfo.id > 3, UserInfo.name == "提莫") ) ).all() for row in ret3: print(row.name) #################### 通配符 #################### ret1 = session.query(UserInfo).filter(UserInfo.name.like("盲%")).first() ret2 = session.query(UserInfo).filter(UserInfo.name.like("盲%")).all() ret3 = session.query(UserInfo).filter(~UserInfo.name.like("盲%")).all() ################### 限制(切片) #################### ret1 = session.query(UserInfo)[1:2] # 顾头不顾尾 #################### 排序 #################### # desc()倒序 asc()正序 ret1 = session.query(UserInfo).order_by(UserInfo.id.desc()).all() ret2 = session.query(UserInfo).order_by(UserInfo.id.desc(), UserInfo.name.asc()).all() #################### 分组 #################### from sqlalchemy.sql import func ret1 = session.query(UserInfo).group_by(UserInfo.age).all() ret2 = session.query( func.max(UserInfo.id), func.min(UserInfo.id)).group_by(UserInfo.age).all() for item in ret2: print(item) ret3 = session.query( UserInfo.depart_id, func.count(UserInfo.id) ).group_by(UserInfo.depart_id).having(func.count(UserInfo.id) >= 2).all() for item in ret3: print(item) #################### 连表 #################### session.query(Book).join(Author).all() session.query(tb1).join(tb2).join(tb3).all() session.query(Book, Author).join(Author).all() session.query(Book, Author).join(Author, Author.id == Book.author_id).all() session.query(Book.id, Book.title, Author.name).join(Author).all() session.query(Book.id, Book.title, Author.name).join(Author, Author.id == Book.author_id).all() session.query(Book, Author).join(Author, isouter=True).all() #################### 组合(两张表的数据组合到一起) #################### # union()去重 union_all()不去重 q1 = session.query(UserInfo.name).filter(UserInfo.id < 3) q2 = session.query(UserInfo.name).filter(UserInfo.id > 3) ret1 = q1.union(q2).all() q3 = session.query(UserInfo.name).filter(UserInfo.id < 3 ) q4 = session.query(UserInfo.name).filter(UserInfo.id < 3 ) ret2 = q3.union_all(q4).all() # 提交事务(查询操作不需要) # session.commit() # 关闭session session.close()
创建多个表并包含Fk关系以及基于relationship操作FK
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column from sqlalchemy import Integer, String, ForeignKey from sqlalchemy import create_engine from sqlalchemy.orm import relationship Base = declarative_base() class Publisher(Base): __tablename__ = "publisher" id = Column(Integer, primary_key=True) name = Column(String(16), index=True, nullable=False) class Book(Base): __tablename__ = "book" id = Column(Integer, primary_key=True) title = Column(String(16), index=True, nullable=False) publisher_id = Column(Integer, ForeignKey("publisher.id")) # 与生成表结构无关,不会在数据库生成列,仅用于查询方便 publisher = relationship("Publisher", backref="books") def init_db(): """根据类创建数据库表""" engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) Base.metadata.create_all(engine) def drop_db(): """根据类删除数据库表""" engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, pool_size=5, pool_timeout=20, pool_recycle=-1 ) Base.metadata.drop_all(engine) if __name__ == "__main__": drop_db() init_db()
from models import Book, Publisher from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) SessionFactory = sessionmaker(bind=engine) # 每次执行数据库操作时,都需要创建一个session session = SessionFactory() # 查询所有书籍 ret = session.query(Book).all() for row in ret: print(row.id, row.title) #################### 基于join操作FK #################### # 查询所有书籍及其出版社 # 方式1: ret1 = session.query(Book, Publisher).join(Publisher).all() # ret1 = session.query(Book, Publisher).join(Publisher, Publisher.id == Book.publisher_id).all() for row in ret1: print(row[0].id, row[0].title, row[1].name) # 方式2: ret2= session.query(Book.id, Book.title, Publisher.name).join(Publisher).all() # ret2 = session.query(Book.id, Book.title, Publisher.name).join(Publisher, Publisher.id == Book.publisher_id).all() for row in ret2: print(row.id, row.title, row.name) #################### 基于relationship操作FK #################### # 查询所有书籍及其出版社名 ret3 = session.query(Book).all() for row in ret3: print(row.id, row.title, row.publisher.name) # 查询"苹果出版社"出版的所有书籍 obj = session.query(Publisher).filter(Publisher.name == "苹果出版社").first() for row in obj.books: print(row.id, row.title, obj.name) #################### 基于relationship的增操作 #################### # 添加"橘子出版社",再给该出版社添加一本书"你在干嘛?" obj = Book(title="你在干嘛?", publisher=Publisher(name="橘子出版社")) session.add(obj) # 添加"樱桃出版社",再给该出版社添加多本书"你看不到我"、"我看到你了" # 可以根据relationship中的backref反向操作 obj = Publisher(name="樱桃出版社") obj.books = [Book(title="你看不到我"), Book(title="我看到你了")] session.add(obj) session.commit() # 关闭session session.close()
创建多个表并包含M2M关系以及基于relationship操作M2M
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column from sqlalchemy import Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy import create_engine from sqlalchemy.orm import relationship Base = declarative_base() class Author(Base): __tablename__ = "author" id = Column(Integer, primary_key=True) name = Column(String(16), index=True, nullable=False) # 与生成表结构无关,不会在数据库生成列,仅用于查询方便 book_list = relationship("Book", secondary="author2book", backref="author_list") class Book(Base): __tablename__ = "book" id = Column(Integer, primary_key=True) title = Column(String(16), index=True, nullable=False) class Author2Book(Base): __tablename__ = "author2book" id = Column(Integer, primary_key=True, autoincrement=True) author_id = Column(Integer, ForeignKey("author.id")) book_id = Column(Integer, ForeignKey("book.id")) __table_args__ = ( UniqueConstraint("author_id", "book_id", name="uic_ar_bk"), # 联合唯一索引 # Index("idx_id_name", "id", "name"), # 联合索引 ) def init_db(): """根据类创建数据库表""" engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) Base.metadata.create_all(engine) def drop_db(): """根据类删除数据库表""" engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, pool_size=5, pool_timeout=20, pool_recycle=-1 ) Base.metadata.drop_all(engine) if __name__ == "__main__": drop_db() init_db()
from models import Book, Author, Author2Book from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) SessionFactory = sessionmaker(bind=engine) # 每次执行数据库操作时,都需要创建一个session session = SessionFactory() #################### 普通操作M2M #################### # 添加数据 """ session.add_all([ Author(name="熊大"), Author(name="光头强"), Book(title="Python"), Book(title="Java"), ]) session.commit() """ """ session.add_all([ Author2Book(author_id=1, book_id=1), Author2Book(author_id=1, book_id=2), Author2Book(author_id=2, book_id=1), ]) session.commit() """ # 三张表关联 """ ret = session.query(Author2Book.id, Author.name, Book.title).join(Author, Author.id == Author2Book.author_id).join(Book, Book.id == Author2Book.book_id).order_by(Author2Book.id.asc()).all() for row in ret: print(row.id, row.name, row.title) # 1 熊大 Python # 2 熊大 Java # 3 光头强 Python """ #################### 基于relationship操作M2M #################### # 查询"熊大"的所有书籍 obj = session.query(Author).filter(Author.name == "熊大").first() for item in obj.book_list: print(item.id, item.title) # 查询"Python"这本书的所有作者 obj = session.query(Book).filter(Book.title == "Python").first() for item in obj.author_list: print(item.id, item.name) # 添加作者"佩奇",再添加两本书"PHP"、"C",然后这两本书关联这个作者 obj = Author(name="佩奇") obj.book_list = [Book(title="PHP"), Book(title="C")] session.add(obj) # 添加书籍"C++", 再添加两位作者"蜡笔小新"、"机器猫",然后这本书关联这两位作者 obj = Book(title="C++") obj.author_list = [Author(name="蜡笔小新"), Author(name="机器猫")] session.add(obj) session.commit() session.close()
基于scoped_session实现线程安全
import threading from models import Author from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.orm import scoped_session engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) SessionFactory = sessionmaker(bind=engine) # 每次执行数据库操作时,都需要创建一个session session = scoped_session(SessionFactory) def task(arg): ret = session.query(Author).all() for row in ret: print(row.name) session.remove() for i in range(20): t = threading.Thread(target=task, args=(i,)) t.start()
执行原生sql(多种方式)
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) SessionFactory = sessionmaker(bind=engine) # 每次执行数据库操作时,都需要创建一个session session = SessionFactory() cursor = session.execute("insert into author(name) values(:value)", params={"value": "花木兰"}) print(cursor.lastrowid) session.commit() session.close() ################################################################################ import threading from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.orm import scoped_session engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) SessionFactory = sessionmaker(bind=engine) session = scoped_session(SessionFactory) def task(arg): cursor = session.execute("insert into author(name) value(:value)", params={"value": "佩奇"}) print(cursor.lastrowid) session.commit() session.remove() for i in range(20): t = threading.Thread(target=task, args=(i,)) t.start() ################################################################################ import threading from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker engine = create_engine( "mysql+pymysql://root:""@127.0.0.1:3306/sqlalchemy_db?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=20, # 池中没有连接最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) SessionFactory = sessionmaker(bind=engine) def task(arg): session = SessionFactory() cursor = session.execute("insert into author(name) value(:value)", params={"value": "乔治"}) print(cursor.lastrowid) session.commit() session.close() for i in range(20): t = threading.Thread(target=task, args=(i,)) t.start()