DFS、BFS解决JZ13机器人的运动范围
描述
地上有一个 rows 行和 cols 列的方格。坐标从 [0,0] 到 [rows-1,cols-1] 。一个机器人从坐标 [0,0] 的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于 threshold 的格子。 例如,当 threshold 为 18 时,机器人能够进入方格 [35,37] ,因为 3+5+3+7 = 18。但是,它不能进入方格 [35,38] ,因为 3+5+3+8 = 19 。请问该机器人能够达到多少个格子? 输入:1,2,3返回值:3
分析
通过打印这个地图的坐标(0代表可行走1代表不可行走)可以看出,通过回溯dfs的方法就可以计算出所能走的路径,以及不断计算节点周围能走动的节点得出答案bfs,本人采用了两种方案分别实现了本题目
代码
/**
* JZ13 机器人的运动范围
* @param threshold
* @param rows
* @param cols
* @return
*/
public int movingCount(int threshold, int rows, int cols) {
int maps[][] = new int[rows][cols];
//通过输入的值进行地图的二维数组初始化
for (int i = 0;i<maps.length;i++) {
for (int j = 0;j<maps[0].length;j++) {
if ((i/100+i/10+i % 10) + (j/100+j/10+j%10)>threshold)
maps[i][j] = 1;
}
}
//打印地图供理解
for (int i = 0;i<maps.length;i++) {
for (int j = 0;j< maps[i].length;j++) {
System.out.print(maps[i][j]);
}
System.out.println();
}
//初始化地图的每个节点
MoveMapNode nodesMap[][] = new MoveMapNode[rows][cols];
for (int i = 0;i<maps.length;i++) {
for (int j =0;j<maps[i].length;j++) {
MoveMapNode node = new MoveMapNode(maps[i][j],i,j,maps);
nodesMap[i][j] = node;
}
}
return movingCountBFS(nodesMap);
}
/**
* bfs实现
* @param nodesMap
* @return
*/
public int movingCountBFS(MoveMapNode nodesMap[][]) {
Queue<MoveMapNode> nodesQueue = new LinkedList<>();
nodesQueue.offer(nodesMap[0][0]);
int count = 1;
nodesMap[0][0].canVisit = false;
while (nodesQueue.size()>0) {
//上
if (nodesQueue.peek().x > 0 && nodesMap[nodesQueue.peek().x - 1][nodesQueue.peek().y].canVisit == true) {
nodesMap[nodesQueue.peek().x - 1][nodesQueue.peek().y].canVisit = false;
nodesQueue.offer(nodesMap[nodesQueue.peek().x - 1][nodesQueue.peek().y]);
count ++;
}
//下
if (nodesQueue.peek().x < nodesMap.length - 1 && nodesMap[nodesQueue.peek().x + 1][nodesQueue.peek().y].canVisit == true) {
nodesMap[nodesQueue.peek().x + 1][nodesQueue.peek().y].canVisit = false;
nodesQueue.offer(nodesMap[nodesQueue.peek().x + 1][nodesQueue.peek().y]);
count ++;
}
//左
if (nodesQueue.peek().y > 0 && nodesMap[nodesQueue.peek().x][nodesQueue.peek().y - 1].canVisit == true) {
nodesMap[nodesQueue.peek().x][nodesQueue.peek().y - 1].canVisit = false;
nodesQueue.offer(nodesMap[nodesQueue.peek().x][nodesQueue.peek().y - 1]);
count ++;
}
//右
if (nodesQueue.peek().y < nodesMap[0].length - 1 && nodesMap[nodesQueue.peek().x][nodesQueue.peek().y + 1].canVisit == true) {
nodesMap[nodesQueue.peek().x][nodesQueue.peek().y + 1].canVisit = false;
nodesQueue.offer(nodesMap[nodesQueue.peek().x][nodesQueue.peek().y + 1]);
count ++;
}
nodesQueue.poll();
}
return count;
}
/**
* dfs实现
* @param nodesMap
* @return
*/
public int movingCountDFS(MoveMapNode nodesMap[][]) {
Stack<MoveMapNode> stack = new Stack<>();
stack.push(nodesMap[0][0]);
int count = 1;
while (stack.size() > 0) {
if (stack.peek().x - 1 > 0 && nodesMap[stack.peek().x - 1][stack.peek().y].canVisit == true) {
//向上判断
stack.push(nodesMap[stack.peek().x - 1][stack.peek().y]);
stack.peek().canVisit = false;
count ++;
}else if (stack.peek().x + 1 <nodesMap.length && nodesMap[stack.peek().x + 1][stack.peek().y].canVisit == true) {
//向下判断
stack.push(nodesMap[stack.peek().x + 1][stack.peek().y]);
stack.peek().canVisit = false;
count ++;
}else if (stack.peek().y - 1 > 0 && nodesMap[stack.peek().x][stack.peek().y - 1].canVisit == true) {
//向左判断
stack.push(nodesMap[stack.peek().x][stack.peek().y - 1]);
stack.peek().canVisit = false;
count ++;
}else if (stack.peek().y + 1 < nodesMap[0].length && nodesMap[stack.peek().x][stack.peek().y + 1].canVisit == true) {
//向右判断
stack.push(nodesMap[stack.peek().x][stack.peek().y + 1]);
stack.peek().canVisit = false;
count ++;
}else {
stack.pop();
}
}
return count;
}
/**
* 每个节点的实体类
*/
class MoveMapNode{
int number;
int x;
int y;
boolean canVisit = true;
//如果当前节点为1就代表不能走动,置canVisit为false
MoveMapNode(int number,int x,int y,int[][]map) {
this.number = number;
this.x = x;
this.y = y;
if (number == 1) {
canVisit = false;
}
}
}