• Hadoop HelloWord Examples- 求平均数


      另外一个hadoop的入门demo,求平均数。是对WordCount这个demo的一个小小的修改。输入一堆成绩单(人名,成绩),然后求每个人成绩平均数,比如:

    //  subject1.txt

      a 90
      b 80
      c 70


     // subject2.txt

      a 100
      b 90
      c 80


      求a,b,c这三个人的平均分。解决思路很简单,在map阶段key是名字,value是成绩,直接output。reduce阶段得到了map输出的key名字,values是该名字对应的一系列的成绩,那么对其求平均数即可。

      这里我们实现了两个版本的代码,分别用TextInputFormat和 KeyValueTextInputFormat来作为输入格式。

      TextInputFormat版本:

     

    import java.util.*;
    import java.io.*;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    
    
    public class AveScore {
    	
    	public static class AveMapper extends Mapper<Object, Text, Text, IntWritable>
    	{
    		@Override
    		public void map(Object key, Text value, Context context) throws IOException, InterruptedException
    		{
    			String line = value.toString();
    			String[] strs = line.split(" ");
    			String name = strs[0];
    			int score = Integer.parseInt(strs[1]);
    			context.write(new Text(name), new IntWritable(score));
    		}
    	}
    	
    	public static class AveReducer extends Reducer<Text, IntWritable, Text, IntWritable>
    	{
    		@Override
    		public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException
    		{
    			int sum = 0;
    			int count = 0;
    			
    			for(IntWritable val : values)
    			{
    				sum += val.get();
    				count++;
    			}
    			
    			int aveScore = sum / count;
    			
    			context.write(key, new IntWritable(aveScore));
    		}
    	}
    	
    	public static void main(String[] args) throws Exception
    	{
    		Configuration conf = new Configuration();
    		
    		Job job = new Job(conf,"AverageScore");
    		job.setJarByClass(AveScore.class);
    		
    		job.setMapperClass(AveMapper.class);
    		job.setReducerClass(AveReducer.class);
    		
    		job.setOutputKeyClass(Text.class);
    		job.setOutputValueClass(IntWritable.class);
    		
    		FileInputFormat.addInputPath(job, new Path(args[0]));
    		FileOutputFormat.setOutputPath(job, new Path(args[1]));
    		
    		System.exit( job.waitForCompletion(true) ? 0 : 1);
    	}
    }
    

    KeyValueTextInputFormat版本;

    import java.util.*;
    import java.io.*;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    
    
    public class AveScore_KeyValue {
    	
    	public static class AveMapper extends Mapper<Text, Text, Text, IntWritable>
    	{
    		@Override
    		public void map(Text key, Text value, Context context) throws IOException, InterruptedException
    		{
    		    int score = Integer.parseInt(value.toString());
    			context.write(key, new IntWritable(score) );
    		}
    	}
    	
    	public static class AveReducer extends Reducer<Text, IntWritable, Text, IntWritable>
    	{
    		@Override
    		public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException
    		{
    			int sum = 0;
    			int count = 0;
    			
    			for(IntWritable val : values)
    			{
    				sum += val.get();
    				count++;
    			}
    			
    			int aveScore = sum / count;
    			
    			context.write(key, new IntWritable(aveScore));
    		}
    	}
    	
    	public static void main(String[] args) throws Exception
    	{
    		Configuration conf = new Configuration();
    		conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", " ");
    		
    		Job job = new Job(conf,"AverageScore");
    		job.setJarByClass(AveScore_KeyValue.class);
    		
    		job.setMapperClass(AveMapper.class);
    		job.setReducerClass(AveReducer.class);
    		
    		job.setOutputKeyClass(Text.class);
    		job.setOutputValueClass(IntWritable.class);
    		
    		job.setInputFormatClass(KeyValueTextInputFormat.class);
    		job.setOutputFormatClass(TextOutputFormat.class); 
    
    		
    		FileInputFormat.addInputPath(job, new Path(args[0]));
    		FileOutputFormat.setOutputPath(job, new Path(args[1]));
    		
    		System.exit( job.waitForCompletion(true) ? 0 : 1);
    	}
    }
    


    输出结果为:

      a 95
      b 85
      c 75

     

  • 相关阅读:
    Go
    Go
    Go -11 Go 框架beego的简单 create run
    文本处理工具之:grep sed awk
    Linux系统布置java项目
    docker 启动mysql 本地连接
    time
    多行查询数据合并成一行进行展示
    settings的使用
    xlsxwriter
  • 原文地址:https://www.cnblogs.com/bbsno1/p/3279661.html
Copyright © 2020-2023  润新知