• 【题解】P2854 [USACO06DEC]牛的过山车Cow Roller Coaster


    P2854 [USACO06DEC]牛的过山车Cow Roller Coaster

    题目描述

    The cows are building a roller coaster! They want your help to design as fun a roller coaster as possible, while keeping to the budget.

    The roller coaster will be built on a long linear stretch of land of length L (1 ≤ L ≤ 1,000). The roller coaster comprises a collection of some of the N (1 ≤ N ≤ 10,000) different interchangable components. Each component i has a fixed length Wi (1 ≤ Wi ≤ L). Due to varying terrain, each component i can be only built starting at location Xi (0 ≤ Xi ≤ L - Wi). The cows want to string together various roller coaster components starting at 0 and ending at L so that the end of each component (except the last) is the start of the next component.

    Each component i has a “fun rating” Fi (1 ≤ Fi ≤ 1,000,000) and a cost Ci (1 ≤ Ci ≤ 1000). The total fun of the roller coster is the sum of the fun from each component used; the total cost is likewise the sum of the costs of each component used. The cows’ total budget is B (1 ≤ B ≤ 1000). Help the cows determine the most fun roller coaster that they can build with their budget.

    奶牛们正打算造一条过山车轨道.她们希望你帮忙,找出最有趣,但又符合预算 的方案. 过山车的轨道由若干钢轨首尾相连,由x=0处一直延伸到X=L(1≤L≤1000)处.现有N(1≤N≤10000)根钢轨,每根钢轨的起点 Xi(0≤Xi≤L- Wi),长度wi(l≤Wi≤L),有趣指数Fi(1≤Fi≤1000000),成本Ci(l≤Ci≤1000)均己知.请确定一 种最优方案,使得选用的钢轨的有趣指数之和最大,同时成本之和不超过B(1≤B≤1000).

    输入输出格式

    输入格式:

    Line 1: Three space-separated integers: L, N and B.

    Lines 2..N+1: Line i+1 contains four space-separated integers, respectively: Xi, Wi, Fi, and Ci.

    输出格式:

    Line 1: A single integer that is the maximum fun value that a roller-coaster can have while staying within the budget and meeting all the other constraints. If it is not possible to build a roller-coaster within budget, output -1.

     

    输入输出样例

    输入样例#1: 复制

    5 6 10
    0 2 20 6
    2 3 5 6
    0 1 2 1
    1 1 1 3
    1 2 5 4
    3 2 10 2

    输出样例#1: 复制

    17

    说明

    Taking the 3rd, 5th and 6th components gives a connected roller-coaster with fun value 17 and cost 7.

    Taking the first two components would give a more fun roller-coaster (25) but would be over budget.

    思路

    • 本题与01背包相似
    • 但不同的是添加了对长度与位置的限制
    • 那么只要在一维的01背包基础上增加一维表示位置即可
    •  $f[k,j]$表示使用j钱铺到k的最优值, $g[]$表示欢乐值, $w[]$表示长度, $c[]$表示费用

    $$if(x[i]+w[i]=k) f[k,j]=max(f[k-w[i],j-c[i]]+g[i],f[k,j])$$

    • 但这样超时,只有x[i]+w[i]=k时才需要考虑转移,那么我们就可以将方程化为

    $$f[v][j]=max(f[u][j-c[i]]+g[i],f[v][j]) v=u+w[i]$$

    • 但这样就要对数据进行排序才能解决无后效性的问题

    代码

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #define ll long long
    #define inf 1324567
    using namespace std;
    ll l,n,b,ans,f[1002][1002];
    struct po{
        ll x,w,f,c;
    }a[10009];
    bool cmp(po xx,po yy){return xx.x<yy.x;} 
    inline int read(){
        int x=0,w=1;
        char ch=getchar();
        while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
        if(ch=='-') w=-1,ch=getchar();
        while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-48,ch=getchar();
        return x*w;
    }
    int main()
    {
        freopen("p2854.in","r",stdin);
        freopen("p2854.out","w",stdout);
        l=read(),n=read(),b=read();
        for(ll i=1;i<=n;i++) a[i].x=read(),a[i].w=read(),a[i].f=read(),a[i].c=read();  
        sort(a+1,a+n+1,cmp);
        memset(f,-1,sizeof(f));
        ans=-inf;
        f[0][0]=0;
        for(ll i=1;i<=n;i++) {
             ll u=a[i].x;
             ll v=a[i].x+a[i].w;
             for(ll j=b;j>=a[i].c;j--)
                  if(f[u][j-a[i].c]!=(-1)) f[v][j]=max(f[u][j-a[i].c]+a[i].f,f[v][j]);   //f[u,j]表示用j的钱铺到u的最优值
        }
        for(ll i=0;i<=b;i++)
        ans=max(ans,f[l][i]);
        printf("%lld
    ",ans);
        return 0;
    }
    
  • 相关阅读:
    _status()函数
    _clear87()函数
    _clear87()函数
    _clear87()函数
    _clear87()函数
    南邮NOJ1009 2的n次方
    南邮NOJ2063 突发奇想的茂凯
    南邮NOJ2063 突发奇想的茂凯
    【HDOJ】1297 Children’s Queue
    【HDOJ】2103 Family planning
  • 原文地址:https://www.cnblogs.com/bbqub/p/8423206.html
Copyright © 2020-2023  润新知