• 【原创】大数据基础之Flume(2)kudu sink


    kudu中的flume sink代码路径:

    https://github.com/apache/kudu/tree/master/java/kudu-flume-sink

    kudu-flume-sink默认使用的producer是

    org.apache.kudu.flume.sink.SimpleKuduOperationsProducer

      public List<Operation> getOperations(Event event) throws FlumeException {
        try {
          Insert insert = table.newInsert();
          PartialRow row = insert.getRow();
          row.addBinary(payloadColumn, event.getBody());
    
          return Collections.singletonList((Operation) insert);
        } catch (Exception e) {
          throw new FlumeException("Failed to create Kudu Insert object", e);
        }
      }

    是将消息直接存放到一个payload列中

    如果想要支持json格式数据,需要二次开发

    package com.cloudera.kudu;
    public class JsonKuduOperationsProducer implements KuduOperationsProducer {

    网上已经有人共享出来代码:https://cloud.tencent.com/developer/article/1158194

    但是以上代码有几个不方便的地方,1)不允许null;2)对时间类型支持不好;3)所有的值必须是string,然后根据kudu中字段类型进行解析,在生成数据时需要注意,否则需要自行修改代码;

    针对以上不便修改后代码如下:

    JsonKuduOperationsProducer.java

    package com.cloudera.kudu;
    
    import com.google.common.collect.Lists;
    import com.google.common.base.Preconditions;
    import org.apache.avro.data.Json;
    import org.json.JSONObject;
    import org.apache.flume.Context;
    import org.apache.flume.Event;
    import org.apache.flume.FlumeException;
    import org.apache.flume.annotations.InterfaceAudience;
    import org.apache.flume.annotations.InterfaceStability;
    import org.apache.kudu.ColumnSchema;
    import org.apache.kudu.Schema;
    import org.apache.kudu.Type;
    import org.apache.kudu.client.KuduTable;
    import org.apache.kudu.client.Operation;
    import org.apache.kudu.client.PartialRow;
    import org.apache.kudu.flume.sink.KuduOperationsProducer;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    import java.nio.charset.Charset;
    import java.text.SimpleDateFormat;
    import java.util.List;
    import java.util.TimeZone;
    import java.util.function.Function;
    
    @InterfaceAudience.Public
    @InterfaceStability.Evolving
    public class JsonKuduOperationsProducer implements KuduOperationsProducer {
        private static final Logger logger = LoggerFactory.getLogger(JsonKuduOperationsProducer.class);
        private static final String INSERT = "insert";
        private static final String UPSERT = "upsert";
        private static final List<String> validOperations = Lists.newArrayList(UPSERT, INSERT);
    
        public static final String ENCODING_PROP = "encoding";
        public static final String DEFAULT_ENCODING = "utf-8";
        public static final String OPERATION_PROP = "operation";
        public static final String DEFAULT_OPERATION = UPSERT;
        public static final String SKIP_MISSING_COLUMN_PROP = "skipMissingColumn";
        public static final boolean DEFAULT_SKIP_MISSING_COLUMN = false;
        public static final String SKIP_BAD_COLUMN_VALUE_PROP = "skipBadColumnValue";
        public static final boolean DEFAULT_SKIP_BAD_COLUMN_VALUE = false;
        public static final String WARN_UNMATCHED_ROWS_PROP = "skipUnmatchedRows";
        public static final boolean DEFAULT_WARN_UNMATCHED_ROWS = true;
    
        private KuduTable table;
        private Charset charset;
        private String operation;
        private boolean skipMissingColumn;
        private boolean skipBadColumnValue;
        private boolean warnUnmatchedRows;
    
        public JsonKuduOperationsProducer() {
        }
    
        @Override
        public void configure(Context context) {
            String charsetName = context.getString(ENCODING_PROP, DEFAULT_ENCODING);
            try {
                charset = Charset.forName(charsetName);
            } catch (IllegalArgumentException e) {
                throw new FlumeException(
                        String.format("Invalid or unsupported charset %s", charsetName), e);
            }
            operation = context.getString(OPERATION_PROP, DEFAULT_OPERATION).toLowerCase();
            Preconditions.checkArgument(
                    validOperations.contains(operation),
                    "Unrecognized operation '%s'",
                    operation);
            skipMissingColumn = context.getBoolean(SKIP_MISSING_COLUMN_PROP,
                    DEFAULT_SKIP_MISSING_COLUMN);
            skipBadColumnValue = context.getBoolean(SKIP_BAD_COLUMN_VALUE_PROP,
                    DEFAULT_SKIP_BAD_COLUMN_VALUE);
            warnUnmatchedRows = context.getBoolean(WARN_UNMATCHED_ROWS_PROP,
                    DEFAULT_WARN_UNMATCHED_ROWS);
        }
    
        @Override
        public void initialize(KuduTable table) {
            this.table = table;
        }
    
        @Override
        public List<Operation> getOperations(Event event) throws FlumeException {
            String raw = new String(event.getBody(), charset);
            logger.info("get raw: " + raw);
            List<Operation> ops = Lists.newArrayList();
            if(raw != null && !raw.isEmpty()) {
                JSONObject json = null;
                //just pass if it is not a json
                try {
                    json = new JSONObject(raw);
                } catch (Exception e) {
                    e.printStackTrace();
                }
                if (json != null) {
                    Schema schema = table.getSchema();
                    Operation op;
                    switch (operation) {
                        case UPSERT:
                            op = table.newUpsert();
                            break;
                        case INSERT:
                            op = table.newInsert();
                            break;
                        default:
                            throw new FlumeException(
                                    String.format("Unrecognized operation type '%s' in getOperations(): " +
                                            "this should never happen!", operation));
                    }
                    //just record the error event into log and pass
                    try {
                        PartialRow row = op.getRow();
                        for (ColumnSchema col : schema.getColumns()) {
                            try {
                                if (json.has(col.getName()) && json.get(col.getName()) != null) coerceAndSet(json.get(col.getName()), col.getName(), col.getType(), col.isKey(), col.isNullable(), col.getDefaultValue(), row);
                                else if (col.isKey() || !col.isNullable()) throw new RuntimeException("column : " + col.getName() + " is null or not exists in " + row);
                            } catch (NumberFormatException e) {
                                String msg = String.format(
                                        "Raw value '%s' couldn't be parsed to type %s for column '%s'",
                                        raw, col.getType(), col.getName());
                                logOrThrow(skipBadColumnValue, msg, e);
                            } catch (IllegalArgumentException e) {
                                String msg = String.format(
                                        "Column '%s' has no matching group in '%s'",
                                        col.getName(), raw);
                                logOrThrow(skipMissingColumn, msg, e);
                            }
                        }
                        ops.add(op);
                    } catch (Exception e) {
                        logger.error("get error [" + e.getMessage() + "]: " + raw, e);
                    }
                }
            }
            return ops;
        }
    
        protected <T> T getValue(T defaultValue, Object val, boolean isKey, boolean isNullable, Object columnDefaultValue, boolean compressException, Function<String, T> fromStr) {
            T result = defaultValue;
            try {
                if (val == null) {
                    if (isKey || !isNullable) {
                        throw new RuntimeException("column is key or not nullable");
                    }
                    if (columnDefaultValue != null && !"null".equals(columnDefaultValue)) {
                        if (columnDefaultValue instanceof String) result = fromStr.apply((String)columnDefaultValue);
                        else result = (T)columnDefaultValue;
                    }
                } else {
                    boolean isConverted = false;
                    //handle: try to convert directly
    //                try {
    //                    result = (T)val;
    //                    isConverted = true;
    //                } catch (Exception e1) {
    ////                    e1.printStackTrace();
    //                }
                    //handle: parse from string
                    if (!isConverted) result = fromStr.apply(val.toString());
                }
            } catch(Exception e) {
                if (compressException) e.printStackTrace();
                else throw e;
            }
            return result;
        }
    
        private SimpleDateFormat[] sdfs = new SimpleDateFormat[]{
                new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.000'Z'"),
                new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'Z'"),
                new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
        };
        {
            for (SimpleDateFormat sdf : sdfs) sdf.setTimeZone(TimeZone.getTimeZone("UTC"));
        }
    
        private void coerceAndSet(Object rawVal, String colName, Type type, boolean isKey, boolean isNullable, Object defaultValue, PartialRow row)
                throws NumberFormatException {
            switch (type) {
                case INT8:
                    row.addByte(colName, (rawVal != null && rawVal instanceof Boolean) ? (Boolean)rawVal ? (byte)1 : (byte)0  : this.getValue((byte)0, rawVal, isKey, isNullable, defaultValue, this.skipBadColumnValue, (String str) -> Byte.parseByte(str)));
                    break;
                case INT16:
                    row.addShort(colName, this.getValue((short)0, rawVal, isKey, isNullable, defaultValue, this.skipBadColumnValue, (String str) -> Short.parseShort(str)));
                    break;
                case INT32:
                    row.addInt(colName, this.getValue(0, rawVal, isKey, isNullable, defaultValue, this.skipBadColumnValue, (String str) -> Integer.parseInt(str)));
                    break;
                case INT64:
                    row.addLong(colName, this.getValue(0l, rawVal, isKey, isNullable, defaultValue, this.skipBadColumnValue, (String str) -> Long.parseLong(str)));
                    break;
                case BINARY:
                    row.addBinary(colName, rawVal == null ? new byte[0] : rawVal.toString().getBytes(charset));
                    break;
                case STRING:
                    row.addString(colName, rawVal == null ? "" : rawVal.toString());
                    break;
                case BOOL:
                    row.addBoolean(colName, this.getValue(false, rawVal, isKey, isNullable, defaultValue, this.skipBadColumnValue, (String str) -> Boolean.parseBoolean(str)));
                    break;
                case FLOAT:
                    row.addFloat(colName, this.getValue(0f, rawVal, isKey, isNullable, defaultValue, this.skipBadColumnValue, (String str) -> Float.parseFloat(str)));
                    break;
                case DOUBLE:
                    row.addDouble(colName, this.getValue(0d, rawVal, isKey, isNullable, defaultValue, this.skipBadColumnValue, (String str) -> Double.parseDouble(str)));
                    break;
                case UNIXTIME_MICROS:
                    Long value = this.<Long>getValue(null, rawVal, isKey, isNullable, defaultValue, this.skipBadColumnValue, (String str) -> {
                        Long result = null;
                        if (str != null && !"".equals(str)) {
                            boolean isPatternOk =false;
                            //handle: yyyy-MM-dd HH:mm:ss
                            if (str.contains("-") && str.contains(":")) {
                                for (SimpleDateFormat sdf : sdfs) {
                                    try {
                                        result = sdf.parse(str).getTime() * 1000;
                                        isPatternOk = true;
                                        break;
                                    } catch (Exception e) {
    //                                  e.printStackTrace();
                                    }
                                }
                            }
                            //handle: second, millisecond, microsecond
                            if (!isPatternOk && (str.length() == 10 || str.length() == 13 || str.length() == 16)) {
                                result = Long.parseLong(str);
                                if (str.length() == 10) result *= 1000000;
                                if (str.length() == 13) result *= 1000;
                            }
                        }
                        return result;
                    });
                    if (value != null) row.addLong(colName, value);
                    break;
                default:
                    logger.warn("got unknown type {} for column '{}'-- ignoring this column", type, colName);
            }
        }
    
        private void logOrThrow(boolean log, String msg, Exception e)
                throws FlumeException {
            if (log) {
                logger.warn(msg, e);
            } else {
                throw new FlumeException(msg, e);
            }
        }
    
        @Override
        public void close() {
        }
    }

    去掉类JsonStr2Map,主要是getValue和coerceAndSet配合,支持默认值,支持null,支持传递任意类型(自动适配处理),支持boolean转byte,时间类型支持yyyy-MM-dd HH:mm:ss等pattern和秒、毫秒、微秒4种格式,并且会自动将秒和毫秒转成微秒;

    注意SimpleDateFormat设置timezone为UTC,这里是为了保证消息中的时间和写入kudu中的时间一致,否则会根据timezone做偏移,比如timezone为Asia/Shanghai,则写入kudu的时间会比消息中的时间晚8小时;

    打包放到$FLUME_HOME/lib下

  • 相关阅读:
    限制次数登录系统
    1-10内的数字累加,输出和大于20的数字。
    输出某个年龄的人的比例
    计算100以内的所有偶数和
    计数器解决一个人数增长问题
    switch处理多分支结构
    if处理多分支结构
    webstom破解
    下拉框左右选择
    勾中行变色效果
  • 原文地址:https://www.cnblogs.com/barneywill/p/10573221.html
Copyright © 2020-2023  润新知