堆(heap)亦被称为:优先队列(priority queue)
逻辑定义:n个元素序列{k1,k2...ki...kn},当且仅当满足下列关系时称之为堆:
(ki <= k2i,ki <= k2i+1)或者(ki >= k2i,ki >= k2i+1), (i = 1,2,3,4...n/2)
堆的实现通过构造二叉堆(binary heap),实为二叉树的一种;由于其应用的普遍性,当不加限定时,均指该数据结构的这种实现。这种数据结构具有以下性质。
- 任意节点小于它的所有后裔,最小元在堆的根上(堆序性)。
- 堆总是一棵完全树。
将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。常见的堆有二叉堆、斐波那契堆等。
(堆只需要满足父节点大于两个子节点,而子节点之间没有要求]。作为一颗完全树,一层中的节点是从左到右填满的。如果一个节点没有左儿子,那么它一定没有右儿子。并且在第h层中如果存在节点,那么第h-1层必须是填满的。)
堆支持以下的基本操作:
- build:建立一个空堆;
- insert:向堆中插入一个新元素;
- update:将新元素提升使其符合堆的性质;
- get:获取当前堆顶元素的值;
- delete:删除堆顶元素;
- heapify:使删除堆顶元素的堆再次成为堆。
某些堆实现还支持其他的一些操作,如斐波那契堆支持检查一个堆中是否存在某个元素。
参考文献:http://zh.wikipedia.org/wiki/%E5%A0%86_(%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84)