• Python yield 生成器


    yield:生成器

    任何使用yield的函数都称之为生成器,如:

    Python代码  收藏代码
    1. def count(n):  
    2.     while n > 0:  
    3.         yield n   #生成值:n  
    4.         n -= 1  

     

    另外一种说法:生成器就是一个返回迭代器的函数,与普通函数的区别是生成器包含yield语句,更简单点理解生成器就是一个迭代器。

    使用yield,可以让函数生成一个序列,该函数返回的对象类型是"generator",通过该对象连续调用next()方法返回序列值。

    Python代码  收藏代码
    1. c = count(5)  
    2. c.next()  
    3. >>> 5  
    4. c.next()  
    5. >>>4  

     

    生成器函数只有在调用next()方法的时候才开始执行函数里面的语句,比如:

    Python代码  收藏代码
    1. def count(n):  
    2.     print "cunting"  
    3.     while n > 0:  
    4.         yield n   #生成值:n  
    5.         n -= 1  

     

    在调用count函数时:c=count(5),并不会打印"counting"只有等到调用c.next()时才真正执行里面的语句。每次调用next()方法时,count函数会运行到语句yield n处为止,next()的返回值就是生成值n,再次调用next()方法时,函数继续执行yield之后的语句(熟悉Java的朋友肯定知道Thread.yield()方法,作用是暂停当前线程的运行,让其他线程执行),如:

    Python代码  收藏代码
    1. def count(n):  
    2.     print "cunting"  
    3.     while n > 0:  
    4.         print 'before yield'  
    5.         yield n   #生成值:n  
    6.         n -= 1  
    7.         print 'after yield'  

     

    上述代码在第一次调用next方法时,并不会打印"after yield"。如果一直调用next方法,当执行到没有可迭代的值后,程序就会报错:

    Traceback (most recent call last): File "", line 1, in StopIteration

    所以一般不会手动的调用next方法,而使用for循环:

    Python代码  收藏代码
    1. for i in count(5):  
    2.     print i,  

     

    实例: 用yield生成器模拟Linux中命令:tail -f | grep python 用于查找监控日志文件中出现有python字样的行。

    Python代码  收藏代码
    1. import time  
    2. def tail(f):  
    3.     f.seek(0,2)#移动到文件EOF,参考:[seek](http://docs.python.org/2/library/stdtypes.html?highlight=file#file.seek)  
    4.     while True:  
    5.         line = f.readline()  #读取文件中新的文本行  
    6.         if not line:  
    7.             time.sleep(0.1)  
    8.             continue  
    9.         yield line  
    10.   
    11. def grep(lines,searchtext):  
    12.     for line in lines:  
    13.         if searchtext in line:  
    14.             yield line  

     

    调用:

    Python代码  收藏代码
    1. flog = tail(open('warn.log'))  
    2. pylines = grep(flog,'python')  
    3. for line in pylines:  
    4.     print line,  

     

    用yield实现斐波那契数列:

    Python代码  收藏代码
    1. def fibonacci():  
    2.     a=b=1  
    3.     yield a  
    4.     yield b  
    5.     while True:  
    6.         a,b = b,a+b  
    7.         yield b  

     

    调用:

    Python代码  收藏代码
    1. for num in fibonacci():  
    2.     if num > 100:  
    3.         break  
    4.     print num,  

     

    yield中return的作用:
    作为生成器,因为每次迭代就会返回一个值,所以不能显示的在生成器函数中return 某个值,包括None值也不行,否则会抛出“SyntaxError”的异常,但是在函数中可以出现单独的return,表示结束该语句。
    通过固定长度的缓冲区不断读文件,防止一次性读取出现内存溢出的例子:

    Python代码  收藏代码
    1. def read_file(path):  
    2.     size = 1024  
    3.     with open(path,'r') as f:  
    4.         while True:  
    5.             block = f.read(SIZE)  
    6.             if block:  
    7.                 yield block  
    8.             else:  
    9.                 return  

     

    如果是在函数中return 具体某个值,就直接抛异常了

    Python代码  收藏代码
    1. >>> def test_return():  
    2. ...      yield 4  
    3. ...      return 0  
    4. ...  
    5.   File "<stdin>", line 3  
    6. SyntaxError: 'return' with argument inside generator  

     

    与yield有关的一个很重要的概念叫**协程**,下次好好研究研究。


    您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

    我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

    如何生成斐波那契數列

    斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

    清单 1. 简单输出斐波那契數列前 N 个数
     def fab(max): 
        n, a, b = 0, 0, 1 
        while n < max: 
            print b 
            a, b = b, a + b 
            n = n + 1

    执行 fab(5),我们可以得到如下输出:

     >>> fab(5) 
     1 
     1 
     2 
     3 
     5

    结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

    要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

    清单 2. 输出斐波那契數列前 N 个数第二版
     def fab(max): 
        n, a, b = 0, 0, 1 
        L = [] 
        while n < max: 
            L.append(b) 
            a, b = b, a + b 
            n = n + 1 
        return L

    可以使用如下方式打印出 fab 函数返回的 List:

     >>> for n in fab(5): 
     ...     print n 
     ... 
     1 
     1 
     2 
     3 
     5

    改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

    来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

    清单 3. 通过 iterable 对象来迭代
     for i in range(1000): pass

    会导致生成一个 1000 个元素的 List,而代码:

     for i in xrange(1000): pass

    则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

    利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

    清单 4. 第三个版本
     class Fab(object): 
    
        def __init__(self, max): 
            self.max = max 
            self.n, self.a, self.b = 0, 0, 1 
    
        def __iter__(self): 
            return self 
    
        def next(self): 
            if self.n < self.max: 
                r = self.b 
                self.a, self.b = self.b, self.a + self.b 
                self.n = self.n + 1 
                return r 
            raise StopIteration()

    Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

     >>> for n in Fab(5): 
     ...     print n 
     ... 
     1 
     1 
     2 
     3 
     5

    然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

    清单 5. 使用 yield 的第四版
     def fab(max): 
        n, a, b = 0, 0, 1 
        while n < max: 
            yield b 
            # print b 
            a, b = b, a + b 
            n = n + 1 
    
    '''

    第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

    调用第四版的 fab 和第二版的 fab 完全一致:

     >>> for n in fab(5): 
     ...     print n 
     ... 
     1 
     1 
     2 
     3 
     5

    简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

    也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

    清单 6. 执行流程
     >>> f = fab(5) 
     >>> f.next() 
     1 
     >>> f.next() 
     1 
     >>> f.next() 
     2 
     >>> f.next() 
     3 
     >>> f.next() 
     5 
     >>> f.next() 
     Traceback (most recent call last): 
      File "<stdin>", line 1, in <module> 
     StopIteration

    当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

    我们可以得出以下结论:

    一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

    yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

    如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

    清单 7. 使用 isgeneratorfunction 判断
     >>> from inspect import isgeneratorfunction 
     >>> isgeneratorfunction(fab) 
     True

    要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

    清单 8. 类的定义和类的实例
     >>> import types 
     >>> isinstance(fab, types.GeneratorType) 
     False 
     >>> isinstance(fab(5), types.GeneratorType) 
     True

    fab 是无法迭代的,而 fab(5) 是可迭代的:

     >>> from collections import Iterable 
     >>> isinstance(fab, Iterable) 
     False 
     >>> isinstance(fab(5), Iterable) 
     True

    每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

     >>> f1 = fab(3) 
     >>> f2 = fab(5) 
     >>> print 'f1:', f1.next() 
     f1: 1 
     >>> print 'f2:', f2.next() 
     f2: 1 
     >>> print 'f1:', f1.next() 
     f1: 1 
     >>> print 'f2:', f2.next() 
     f2: 1 
     >>> print 'f1:', f1.next() 
     f1: 2 
     >>> print 'f2:', f2.next() 
     f2: 2 
     >>> print 'f2:', f2.next() 
     f2: 3 
     >>> print 'f2:', f2.next() 
     f2: 5

    return 的作用

    在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

    另一个例子

    另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

    清单 9. 另一个 yield 的例子
     def read_file(fpath): 
        BLOCK_SIZE = 1024 
        with open(fpath, 'rb') as f: 
            while True: 
                block = f.read(BLOCK_SIZE) 
                if block: 
                    yield block 
                else: 
                    return

    以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。

    注:本文的代码均在 Python 2.7 中调试通过


  • 相关阅读:
    泛型技巧系列:如何提供类型参数之间的转换
    一些支离破碎的泛型反射技巧
    泛型技巧系列:类型字典和Type Traits
    Excel开发:简化工作表中选定区域的操作。
    趣味程序:打印自己代码的程序
    VBF BETA 1.5 发布了
    .NET 2.0 CER学习笔记
    随笔乱入,开心就好
    Cocos2dx for WindowsPhone:开发一个打地鼠游戏(下)
    跨平台网络游戏趋势和优势
  • 原文地址:https://www.cnblogs.com/baoendemao/p/3804699.html
Copyright © 2020-2023  润新知