• Codeforces Round #369 (Div. 2) C. Coloring Trees DP


    C. Coloring Trees

    链接:

    http://codeforces.com/problemset/problem/711/C

    题意:

    给你nn棵树,如果cici为0的话,那么这棵树就没有上色,否则这棵树就是cici颜色的。

    相同颜色的树会被当成一段,现在你要恰好刷漆刷成k段,问你最小花费是多少。

    把第i棵树刷漆刷成j颜色的花费为p[i][j]

    题解:

    dp[i][j][k]表示第i棵树,刷成了j颜色,当前有k段的最小花费是多少。

    然后好礼n^4转移就好了,很容易就能够优化成空间n^2,时间n^3的。

    不优化也能过。

    代码:

     1 #include<iostream>
     2 #include<algorithm>
     3 #define LL long long
     4 #define inf 1e17+1
     5 using namespace std;
     6 
     7 const int maxn = 100 + 10;
     8 LL p[maxn][maxn];
     9 LL dp[maxn][maxn][maxn];
    10 int c[maxn];
    11 
    12 int main()
    13 {
    14     int n, m, kk;
    15     cin >> n >> m >> kk;
    16     for (int i = 1; i <= n; i++)
    17         cin >> c[i];
    18     for (int i = 1; i <= n; i++)
    19         for (int j = 1; j <= m; j++)
    20             cin >> p[i][j];
    21     for (int i = 0; i <= 100; i++)
    22         for (int j = 0; j <= 100; j++)
    23             for (int k = 0; k <= 100; k++)
    24                 dp[i][j][k] = inf;
    25     dp[0][0][0] = 0;
    26     for (int i = 1; i <= n; i++)
    27         if (c[i] != 0)
    28             for (int j = 0; j <= m; j++)
    29                 for (int k = 0; k <= i; k++)
    30                     if (c[i] == j)
    31                         dp[i][c[i]][k] = min(dp[i - 1][j][k], dp[i][c[i]][k]);
    32                     else
    33                         dp[i][c[i]][k + 1] = min(dp[i - 1][j][k], dp[i][c[i]][k + 1]);
    34         else
    35             for (int t = 1; t <= m; t++)
    36                 for (int j = 0; j <= m; j++)
    37                     for (int k = 0; k <= i; k++)
    38                         if (t == j)
    39                             dp[i][t][k] = min(dp[i - 1][j][k] + p[i][t], dp[i][t][k]);
    40                         else
    41                             dp[i][t][k + 1] = min(dp[i - 1][j][k] + p[i][t], dp[i][t][k + 1]);
    42     LL ans = inf;
    43     for (int i = 0; i <= m; i++)
    44         ans = min(dp[n][i][kk], ans);
    45     if (ans == inf)
    46         cout << "-1" << endl;
    47     else
    48         cout << ans << endl;
    49     return 0;
    50 }
  • 相关阅读:
    深度解析VC中的消息传递机制(上)
    DLL的远程注入技术
    一些游戏编程的书[转]
    [转]小小C的C++之歌
    Windows Server 2008无法使用arp命令添加静态MAC绑定
    如何调用未公开的API函数[转]
    IOCP中的socket错误和资源释放处理方法
    TinyXML应用例子
    微软C/C++ 编译器选项参考
    [摘录]这几本游戏编程书籍你看过吗?
  • 原文地址:https://www.cnblogs.com/baocong/p/5912595.html
Copyright © 2020-2023  润新知