• Better performance with tf.function(TensorFlow/学习/TensorFlow Core/指南)


    本文原始页面链接:https://tensorflow.google.cn/guide/function

    在TensorFlow 2.x系列的版本,eager execution功能是默认打开的,用户接口更直观和灵活,但是代价体现在性能和部署的方面。
    想要得到性能和便携性都很好的模型,可以使用tf.function从你的程序中生成图(graph)。但是关于tf.function也有一些问题/陷阱需要注意,本文帮助你理解tf.function到底在做些什么,以方便你掌握它。

    
    ** 追踪(trace/tracing):tensorflow依据输入构建图(Graph)的过程称为追踪(tracing)。 **
    ** 回溯(retracing):当参数发生变化,重新构建图(Graph)的过程。 **
    
    

    主要结论和建议包括:

    • 使用Eager execution模式debug,使用tf.function装饰函数 / Debug in Eager mode, then decorate with @tf.function.
    • 不要依赖python副作用,如对象转变或者是列表append / Don't rely on Python side effects like object mutation or list appends.
    • tf.function与TensorFlow op搭配工作的最好,numpy和python调用被转换成常量 / tf.function works best with TensorFlow ops; NumPy and Python calls are converted to constants.

    开始(Setup)

    import tensorflow as tf
    

    定义一个帮助函数,提示可能遇到的错误类型:

    import traceback
    import contextlib
    
    # Some helper code to demonstrate the kinds of errors you might encounter.
    @contextlib.contextmanager
    def assert_raises(error_class):
      try:
        yield
      except error_class as e:
        print('Caught expected exception 
      {}:'.format(error_class))
        traceback.print_exc(limit=2)
      except Exception as e:
        raise e
      else:
        raise Exception('Expected {} to be raised but no error was raised!'.format(
            error_class))
    

    基本(Basics)

    你自己定义的函数,经过tf.function装饰后,就成为像tensorflow的核心操作一样,可以eager execution,求梯度等等。。

    比如定义add函数,执行eager execution,

    @tf.function
    def add(a, b):
      return a + b
    
    add(tf.ones([2, 2]), tf.ones([2, 2]))  #  [[2., 2.], [2., 2.]]
    

    输出是:

    <tf.Tensor: shape=(2, 2), dtype=float32, numpy=
    array([[2., 2.],
           [2., 2.]], dtype=float32)>
    

    对add求梯度,

    v = tf.Variable(1.0)
    with tf.GradientTape() as tape:
      result = add(v, 1.0)
    tape.gradient(result, v)
    

    其输出是,

    <tf.Tensor: shape=(), dtype=float32, numpy=1.0>
    

    也可以在tf.function函数中使用定义过的tf.function函数,

    @tf.function
    def dense_layer(x, w, b):
      return add(tf.matmul(x, w), b)
    
    dense_layer(tf.ones([3, 2]), tf.ones([2, 2]), tf.ones([2]))
    
    <tf.Tensor: shape=(3, 2), dtype=float32, numpy=
    array([[3., 3.],
           [3., 3.],
           [3., 3.]], dtype=float32)>
    

    如此定义的tf.function函数比立即执行的代码要快,特别是对于有许多小op操作的图(Graph),但是对于有一些计算量大的操作(比如卷积conv),也许速度就不会有明显提升,

    import timeit
    conv_layer = tf.keras.layers.Conv2D(100, 3)
    
    @tf.function
    def conv_fn(image):
      return conv_layer(image)
    
    image = tf.zeros([1, 200, 200, 100])
    # warm up
    conv_layer(image); conv_fn(image)
    print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10))
    print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10))
    print("Note how there's not much difference in performance for convolutions")
    
    Eager conv: 0.004070537999723456
    Function conv: 0.0023154040000008536
    Note how there's not much difference in performance for convolutions
    

    调试(Debugging)

    一般情况下,在eager模式下调试代码比在tf.function函数中调试更简单。使用tf.function装饰你的函数之前,应该确保在eager模式下没有运行错误。为了帮助调试,可以使用tf.config.run_functions_eagerly(True)全局地禁用/允许tf.function功能。

    在调试一些只在tf.function定义的函数内部出现的问题时,有以下几点提示:

    • 只在tracing的时候调用python的print,帮助跟踪函数. / Plain old Python print calls only execute during tracing, helping you track down when your functions get (re)traced.
    • tf.print调用每次都会执行,在执行时追踪中间值。/ tf.print calls will execute every time, and can help you track down intermediate values during execution.
    • 当出现NaN与Inf时,使用tf.debugging.enable_check_numerics 帮助追踪./ tf.debugging.enable_check_numerics is an easy way to track down where NaNs and Inf are created.
    • pdb 能帮助理解tracing时程序的详细信息。/ pdbcan help you understand what's going on during tracing. (Caveat: PDB will drop you into AutoGraph-transformed source code.)

    追踪和多态性(Tracing and polymorphism)

    python的动态类型意味着你可以使用各种不同的参数类型调用函数,而python会对应不同的参数执行不同的行为。

    相反的是,TensorFlow的图(Graph)要求静态的数据类型和数据维度(形状);tf.function弥补了这一差距,它在需要时会回溯函数,从而产生正确的图。ft.function使用时的微妙之处大多数都源自于这种回溯行为。

    使用不同的参数调用函数,观察如下,

    # Functions are polymorphic
    
    @tf.function
    def double(a):
      print("Tracing with", a)
      return a + a
    
    print(double(tf.constant(1)))
    print()
    print(double(tf.constant(1.1)))
    print()
    print(double(tf.constant("a")))
    print()
    
    Tracing with Tensor("a:0", shape=(), dtype=int32)
    tf.Tensor(2, shape=(), dtype=int32)
    
    Tracing with Tensor("a:0", shape=(), dtype=float32)
    tf.Tensor(2.2, shape=(), dtype=float32)
    
    Tracing with Tensor("a:0", shape=(), dtype=string)
    tf.Tensor(b'aa', shape=(), dtype=string)
    

    想要控制这种追溯回溯行为,可以使用如下的技术:

    创建一个新的tf.function,独立的tf.function函数对象已经确保不会共享追踪。

    def f():
      print('Tracing!')
      tf.print('Executing')
    
    tf.function(f)()
    tf.function(f)()
    
    Tracing!
    Executing
    Tracing!
    Executing
    

    使用get_concrete_function来获取一个特定的追踪:

    print("Obtaining concrete trace")
    double_strings = double.get_concrete_function(tf.TensorSpec(shape=None, dtype=tf.string))
    print("Executing traced function")
    print(double_strings(tf.constant("a")))
    print(double_strings(a=tf.constant("b")))
    print("Using a concrete trace with incompatible types will throw an error")
    with assert_raises(tf.errors.InvalidArgumentError):
      double_strings(tf.constant(1))
    
    Obtaining concrete trace
    Tracing with Tensor("a:0", dtype=string)
    Executing traced function
    tf.Tensor(b'aa', shape=(), dtype=string)
    tf.Tensor(b'bb', shape=(), dtype=string)
    Using a concrete trace with incompatible types will throw an error
    Caught expected exception 
      <class 'tensorflow.python.framework.errors_impl.InvalidArgumentError'>:
    
    Traceback (most recent call last):
      File "<ipython-input-3-73d0ca52e838>", line 8, in assert_raises
        yield
      File "<ipython-input-10-5351d0a2eda2>", line 8, in <module>
        double_strings(tf.constant(1))
    tensorflow.python.framework.errors_impl.InvalidArgumentError: cannot compute __inference_double_183 as 
          input #0(zero-based) was expected to be a string tensor but is a int32 tensor [Op:__inference_double_183]
    

    在tf.function中指定input_signature来限制追踪:

    @tf.function(input_signature=(tf.TensorSpec(shape=[None], dtype=tf.int32),))
    def next_collatz(x):
      print("Tracing with", x)
      return tf.where(x % 2 == 0, x // 2, 3 * x + 1)
    
    print(next_collatz(tf.constant([1, 2])))
    # We specified a 1-D tensor in the input signature, so this should fail.
    with assert_raises(ValueError):
      next_collatz(tf.constant([[1, 2], [3, 4]]))
    
    
    Tracing with Tensor("x:0", shape=(None,), dtype=int32)
    tf.Tensor([4 1], shape=(2,), dtype=int32)
    Caught expected exception 
      <class 'ValueError'>:
    
    Traceback (most recent call last):
      File "<ipython-input-3-73d0ca52e838>", line 8, in assert_raises
        yield
      File "<ipython-input-11-9939c82c1507>", line 9, in <module>
        next_collatz(tf.constant([[1, 2], [3, 4]]))
    ValueError: Python inputs incompatible with input_signature:
      inputs: (
        tf.Tensor(
    [[1 2]
     [3 4]], shape=(2, 2), dtype=int32))
      input_signature: (
        TensorSpec(shape=(None,), dtype=tf.int32, name=None))
    

    何时回溯(When to retrace)

    一个多态的tf.function会保持追踪时产生的函数实体的缓存。缓存的keys是从function的args和kwargs参数产生的有效tuple。对于一个tf.Tensor参数产生的key是它的维度数目和类型,对python参数产生的key是它的值。对于其他的python类型,keys基于对象的id()产生,因此对类的每一个实例的方法都能够单独追踪。未来,TensorFlow有可能会给python对象增加更复杂的缓存,使对象能够安全地转换为Tensor。

    可参考Concrete functions

    Python还是Tensor参数?(Python or Tensor args?)

    通常情况下,Python参数用于控制超参数与图的构建,如num_layers=10,training=True,nonlinearity=relu。如果python的参数改变了,就必须要回溯图。

    然而,不用python参数去控制图的构建也是可能的。python的值改变会引发不必要的回溯,例如在这个训练循环中,AutoGraph会动态展开,尽管有多个追踪,产生的图实际上是相同的,这样效率有些低。

    def train_one_step():
      pass
    
    @tf.function
    def train(num_steps):
      print("Tracing with num_steps = {}".format(num_steps))
      for _ in tf.range(num_steps):
        train_one_step()
    
    train(num_steps=10)
    train(num_steps=20)
    
    
    Tracing with num_steps = 10
    Tracing with num_steps = 20
    
    

    如果你的参数不影响产生的图的形状,可以将你的参数转换成Tensor,

    train(num_steps=tf.constant(10))
    train(num_steps=tf.constant(20))
    
    Tracing with num_steps = Tensor("num_steps:0", shape=(), dtype=int32)
    

    tf.function的副作用

    一般情况下,python的副作用(print,转换对象等)只在追踪(tracing)时发生,那么如何可靠的从tf.function中触发python的副作用呢?

    经验就是只在调试时使用python副作用。否则,TensorFlow的操作(ops)像 tf.Variable.assign, tf.print, tf.summary等,是保证你的代码被TensorFlow Runtime追踪以及执行的最好选择。一般使用函数风格会产生最好的结果,

    @tf.function
    def f(x):
      print("Traced with", x)
      tf.print("Executed with", x)
    
    f(1)
    f(1)
    f(2)
    
    
    Traced with 1 //只在追踪时执行python print
    Executed with 1
    Executed with 1
    Traced with 2 //只在追踪时执行python print
    Executed with 2
    
    

    如果你想在每次调用tf.function时执行python代码,tf.py_function是一个出口。tf.py_function的缺陷是它既不便携,也不特别高效,而且在分布式设备(multi-GPU, TPU)也不能很好地工作。而且,为了可微分性,tf.py_function必须接入图,它将(与图之间的)所有的输入/输出强制转换为Tensor。

    external_list = []
    
    def side_effect(x):
      print('Python side effect')
      external_list.append(x)
    
    @tf.function
    def f(x):
      tf.py_function(side_effect, inp=[x], Tout=[])
    
    f(1)
    f(1)
    f(1)
    assert len(external_list) == 3
    # .numpy() call required because py_function casts 1 to tf.constant(1)
    assert external_list[0].numpy() == 1
    
    Python side effect
    Python side effect
    Python side effect
    

    注意python的状态(Beware of Python state)

    python的许多特征,如迭代器或者生成器,依靠python runtime去追踪状态。一般来说,这些构造器在Eager模式下会按照预期的那样工作,由于追踪行为(tracing behavior),它们在tf.function内部会引发许多意外的结果。

    比如,向前推进迭代器的状态是Python的一个副作用,因此只在跟踪期间发生,

    external_var = tf.Variable(0)
    @tf.function
    def buggy_consume_next(iterator):
      external_var.assign_add(next(iterator))
      tf.print("Value of external_var:", external_var)
    
    iterator = iter([0, 1, 2, 3])
    buggy_consume_next(iterator)
    # This reuses the first value from the iterator, rather than consuming the next value.
    buggy_consume_next(iterator)
    buggy_consume_next(iterator)
    
    
    Value of external_var: 0
    Value of external_var: 0
    Value of external_var: 0
    
    

    变量(Variables)

    我们可以使用与提升代码的预期执行顺序所相同的思想,使得在tf.function中创建和使用变量非常容易。

    一个很重要的警告,使用变量时,可以写出在eager模式和图模式下表现不同的代码。
    具体地说,当你每次调用的时候都创建一个新的变量,这种情况就有可能发生。由于追踪语义,tf.function会在每次调用时复用同一个变量,但是eager模式会在每次调用时创建一个新的变量。 为了解决这个错误,当检测到危险的变量创建行为时,tf.function会引发错误警告。

    @tf.function
    def f(x):
      v = tf.Variable(1.0)
      v.assign_add(x)
      return v
    
    with assert_raises(ValueError):
      f(1.0)
    
    
    WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/resource_variable_ops.py:1817: 
                                  calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint
                                  is deprecated and will be removed in a future version.
    Instructions for updating:
    If using Keras pass *_constraint arguments to layers.
    Caught expected exception 
      <class 'ValueError'>:
    
    Traceback (most recent call last):
      File "<ipython-input-3-73d0ca52e838>", line 8, in assert_raises
        yield
      File "<ipython-input-17-73e410646579>", line 8, in <module>
        f(1.0)
    ValueError: in user code:
    
        <ipython-input-17-73e410646579>:3 f  *
            v = tf.Variable(1.0)
        /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/variables.py:261 __call__  **
            return cls._variable_v2_call(*args, **kwargs)
        /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/variables.py:255 _variable_v2_call
            shape=shape)
        /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/variables.py:66 getter
            return captured_getter(captured_previous, **kwargs)
        /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py:511 invalid_creator_scope
            "tf.function-decorated function tried to create "
    
        ValueError: tf.function-decorated function tried to create variables on non-first call.
    
    

    无歧义的代码是没有问题的,

    v = tf.Variable(1.0)
    
    @tf.function
    def f(x):
      return v.assign_add(x)
    
    print(f(1.0))  # 2.0
    print(f(2.0))  # 4.0
    
    
    tf.Tensor(2.0, shape=(), dtype=float32)
    tf.Tensor(4.0, shape=(), dtype=float32)
    
    

    你只要能够保证这些变量只在tf.function函数第一次执行时被创建,也可以在tf.function中创建变量,

    class C:
      pass
    
    obj = C()
    obj.v = None
    
    @tf.function
    def g(x):
      if obj.v is None:
        obj.v = tf.Variable(1.0)
      return obj.v.assign_add(x)
    
    print(g(1.0))  # 2.0
    print(g(2.0))  # 4.0
    
    
    tf.Tensor(2.0, shape=(), dtype=float32)
    tf.Tensor(4.0, shape=(), dtype=float32)
    

    变量的初始化可以通过函数的参数以及其他变量的值,我们可以使用与产生控制依赖项相同的方法来确定的初始化顺序,

    state = []
    @tf.function
    def fn(x):
      if not state:
        state.append(tf.Variable(2.0 * x))
        state.append(tf.Variable(state[0] * 3.0))
      return state[0] * x * state[1]
    
    print(fn(tf.constant(1.0)))
    print(fn(tf.constant(3.0)))
    
    
    tf.Tensor(12.0, shape=(), dtype=float32)
    tf.Tensor(36.0, shape=(), dtype=float32)
    
    

    AutoGraph 转换(AutoGraph Transformations)

    Autograph是在tf.function中默认启用的库,它将python中一部分子集代码转换为图兼容的TensorFlow操作(ops),包含控制流如if,for,while等。

    TensorFlow ops如tf.condtf.while_loop可以工作,但是用python代码写的控制流更容易编写和理解。

    # Simple loop
    
    @tf.function
    def f(x):
      while tf.reduce_sum(x) > 1:
        tf.print(x)
        x = tf.tanh(x)
      return x
    
    f(tf.random.uniform([5]))
    
    [0.42992723 0.425026417 0.735794306 0.224515557 0.623353]
    [0.405260503 0.401156455 0.626597464 0.2208177 0.553458273]
    [0.384441048 0.380938053 0.555704892 0.217297286 0.503107667]
    ...
    ...
    [0.203162178 0.202645645 0.219479173 0.161014691 0.215892553]
    
    <tf.Tensor: shape=(5,), dtype=float32, numpy=
    array([0.20041241, 0.19991657, 0.2160216 , 0.1596375 , 0.21259971],
          dtype=float32)>
    

    通过下面的语句,可以检查自动图(AutoGraph)转换所生成的代码,

    print(tf.autograph.to_code(f.python_function))
    
    
    def tf__f(x):
        do_return = False
        retval_ = ag__.UndefinedReturnValue()
        with ag__.FunctionScope('f', 'fscope', ag__.ConversionOptions(
          recursive=True, user_requested=True,optional_features=(), internal_convert_user_code=True)) as fscope:
    
            def get_state():
                return (x,)
    
            def set_state(loop_vars):
                nonlocal x
                (x,) = loop_vars
    
            def loop_body():
                nonlocal x
                ag__.converted_call(tf.print, (x,), None, fscope)
                x = ag__.converted_call(tf.tanh, (x,), None, fscope)
    
            def loop_test():
                return (ag__.converted_call(tf.reduce_sum, (x,), None, fscope) > 1)
            ag__.while_stmt(loop_test, loop_body, get_state, set_state, ('x',), {})
            try:
                do_return = True
                retval_ = fscope.mark_return_value(x)
            except:
                do_return = False
                raise
        (do_return,)
        return ag__.retval(retval_)
    
    

    · 条件

    AutoGraph会转换一些条件语句(if<condition>)变成相同的tf.cond调用。如果<condition>是Tensor的话,AutoGraph就会执行转换,否则,if就按照python语句执行。

    Python条件只在追踪时(tracing)执行,因此条件的一个分支会被加入图中。没有AutoGraph,如果存在依赖于数据的控制流,则此跟踪图(Tracing Graph)将无法执行选择分支。

    tf.cond追踪和增加所有条件分支到图中,在执行时动态选择一个分支。追踪也会也发意外的副作用,更多信息参考AutoGraph tracing effects

    @tf.function
    def fizzbuzz(n):
      for i in tf.range(1, n + 1):
        print('Tracing for loop')
        if i % 15 == 0:
          print('Tracing fizzbuzz branch')
          tf.print('fizzbuzz')
        elif i % 3 == 0:
          print('Tracing fizz branch')
          tf.print('fizz')
        elif i % 5 == 0:
          print('Tracing buzz branch')
          tf.print('buzz')
        else:
          print('Tracing default branch')
          tf.print(i)
    
    fizzbuzz(tf.constant(5))
    fizzbuzz(tf.constant(20))
    
    
    Tracing for loop
    Tracing fizzbuzz branch
    Tracing fizz branch
    Tracing buzz branch
    Tracing default branch
    1
    2
    fizz
    4
    buzz
    1
    2
    fizz
    4
    buzz
    fizz
    7
    8
    fizz
    buzz
    11
    fizz
    13
    14
    fizzbuzz
    16
    17
    fizz
    19
    buzz
    
    

    参考reference documentation有关AutoGraph转换的if语句的额外限制。

    · 循环

    AutoGraph转换一些forwhile语句成为等同的TensorFlow ops,比如tf.while_loop。如果没有转换,forwhile循环当作python语句执行。

    这个转换在以下情况下进行:

    • for x in y: 如果y是一个Tensor,转换为tf.while_loop。在y是一个tf.data.Dataset的特殊情况下,会生成一个tf.data.Datasetops的连接。
    • while<condition>: 如果<condition>是Tensor,转换为tf.while_loop

    Python循环在追踪期间(tracing)执行,每次循环迭代都对图(Graph)增加额外的ops。

    TensorFlow的循环对循环体进行追踪,在Runtime动态地选择迭代次数。循环体在生成的tf.Graph中只出现一次。

    参考reference documentation有关AutoGraph转换的forwhile语句的额外限制。

    · 对python数据的循环(Looping over Python data)

    一个常见的问题是在tf.function内循环Numpy/python的数据,这个循环在追踪过程中执行,每次迭代都复制你的模型到tf.Graph中。

    如果想要把整个训练循环都包括在tf.function中,最安全的方式就是将你的数据包裹为tf.data.Dataset,这样AutoGraph会动态地展开训练数据。

    def measure_graph_size(f, *args):
      g = f.get_concrete_function(*args).graph
      print("{}({}) contains {} nodes in its graph".format(
          f.__name__, ', '.join(map(str, args)), len(g.as_graph_def().node)))
    
    @tf.function
    def train(dataset):
      loss = tf.constant(0)
      for x, y in dataset:
        loss += tf.abs(y - x) # Some dummy computation.
      return loss
    
    small_data = [(1, 1)] * 3
    big_data = [(1, 1)] * 10
    measure_graph_size(train, small_data)
    measure_graph_size(train, big_data)
    
    measure_graph_size(train, tf.data.Dataset.from_generator(
        lambda: small_data, (tf.int32, tf.int32)))
    measure_graph_size(train, tf.data.Dataset.from_generator(
        lambda: big_data, (tf.int32, tf.int32)))
    
    
    train([(1, 1), (1, 1), (1, 1)]) contains 11 nodes in its graph
    train([(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1)]) contains 32 nodes in its graph
    train(<FlatMapDataset shapes: (<unknown>, <unknown>), types: (tf.int32, tf.int32)>) contains 8 nodes in its graph
    train(<FlatMapDataset shapes: (<unknown>, <unknown>), types: (tf.int32, tf.int32)>) contains 8 nodes in its graph
    
    

    当把Numpy/Python数据包裹进Dataset中,注意区别使用tf.data.Dataset.from_generatortf.data.Dataset.from_tensors,前者会将数据保持python的形式,通过tf.py_function取数据,性能方面会有影响;后者将数据复制后作为图上的一个tf.constant节点,内存方面会有影响。

    从TFRecordDataset/CsvDataset/etc读取数据是最高效的形式,无需python的参与,TensorFlow会自动管理数据的异步载入和预存取。更多信息参考 tf.data guide

    · 在循环中累积值(Accumulating values in a loop)

    通常操作是在循环中累积中间值,正常情况下,这是通过python的扩展列表(list)或者增加字典实体来实现的。由于python的副作用,在动态展开的循环中,这些操作不会像预期的那样工作。使用tf.TensorArray从动态展开循环中累积结果/中间值。

    batch_size = 2
    seq_len = 3
    feature_size = 4
    
    def rnn_step(inp, state):
      return inp + state
    
    @tf.function
    def dynamic_rnn(rnn_step, input_data, initial_state):
      # [batch, time, features] -> [time, batch, features]
      input_data = tf.transpose(input_data, [1, 0, 2])
      max_seq_len = input_data.shape[0]
    
      states = tf.TensorArray(tf.float32, size=max_seq_len)
      state = initial_state
      for i in tf.range(max_seq_len):
        state = rnn_step(input_data[i], state)
        states = states.write(i, state)
      return tf.transpose(states.stack(), [1, 0, 2])
      
    dynamic_rnn(rnn_step,
                tf.random.uniform([batch_size, seq_len, feature_size]),
                tf.zeros([batch_size, feature_size]))
    
    
    <tf.Tensor: shape=(2, 3, 4), dtype=float32, numpy=
    array([[[0.96471524, 0.233114  , 0.1417228 , 0.14083493],
            [1.6257136 , 0.9389272 , 0.73989546, 0.8011714 ],
            [2.233508  , 1.827873  , 1.1567426 , 1.5585394 ]],
    
           [[0.67377114, 0.42712367, 0.5697857 , 0.71173656],
            [1.5520021 , 0.806401  , 0.9260858 , 1.5265073 ],
            [1.8115815 , 1.6316041 , 1.2245122 , 1.9724467 ]]], dtype=float32)>
    

    Further reading

    要了解在追踪了tf.function以后更多的图优化内容,参考Grappler guide
    要连接如何优化数据流水线和配置模型,参考Profiler guide

  • 相关阅读:
    VlanTrunk
    2015届互联网名企校招网址一览表
    The declared package does not match the expected package
    经典的算法网站
    Nutch
    JTable只要一双击就进入编辑状态,禁止的方法实现
    Java通过JDBC链接数据库,数据库中wen
    Cisco Packet Tracer的使用(一)
    Nutch安装的几个网址
    面试经
  • 原文地址:https://www.cnblogs.com/banluxinshou/p/13279937.html
Copyright © 2020-2023  润新知