• 生产者和消费者模型


    生产者-消费者模型

    网上有很多生产者-消费者模型的定义和实现。本文研究最常用的有界生产者-消费者模型,简单概括如下:

    • 生产者持续生产,直到缓冲区满,阻塞;缓冲区不满后,继续生产
    • 消费者持续消费,直到缓冲区空,阻塞;缓冲区不空后,继续消费
    • 生产者可以有多个,消费者也可以有多个

    可通过如下条件验证模型实现的正确性:

    • 同一产品的消费行为一定发生在生产行为之后
    • 任意时刻,缓冲区大小不小于0,不大于限制容量

    准备 - 接口定义

    消费者:

    public abstract class AbstractConsumer implements Runnable {
    
        protected abstract void consume() throws InterruptedException;
    
        @Override
        public void run() {
            while (true) {
                try {
                    consume();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                    break;
                }
            }
        }
    }

    生产者

    public abstract class AbstractProducer implements Runnable {
    
        protected abstract void produce() throws InterruptedException;
    
        @Override
        public void run() {
            while (true) {
                try {
                    produce();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                    break;
                }
            }
        }
    }

    模型:

    public interface Model {
        Runnable newRunnableConsumer();
    
        Runnable newRunnableProducer();
    }

    bean:

    public class Task {
        private int no;
        public Task(int no) {
            this.no = no;
        }
    
        public int getNo() {
            return no;
        }
    }

    实现一:BlockingQueue

    BlockingQueue的写法最简单。核心思想是,把并发和容量控制封装在缓冲区中。

    public class BlockingQueueModel implements Model {
    
        private final BlockingQueue<Task> blockingQueue;
    
        BlockingQueueModel(int capacity) {
            this.blockingQueue = new LinkedBlockingQueue<>(capacity);
        }
    
        private final AtomicInteger taskNo = new AtomicInteger(0);
    
        @Override
        public Runnable newRunnableConsumer() {
            return new AbstractConsumer() {
                @Override
                public void consume() throws InterruptedException {
                    Task task = blockingQueue.take();
                    // 固定时间范围的消费,模拟相对稳定的服务器处理过程
                    TimeUnit.MILLISECONDS.sleep(500 + (long) (Math.random() * 500));
                    System.out.println("consume: " + task.getNo());
                }
            };
        }
    
        @Override
        public Runnable newRunnableProducer() {
            return new AbstractProducer() {
                @Override
                public void produce() throws InterruptedException {
                    // 不定期生产,模拟随机的用户请求
                    TimeUnit.MILLISECONDS.sleep((long) (Math.random() * 1000));
                    Task task = new Task(taskNo.getAndIncrement());
                    blockingQueue.put(task);
                    System.out.println("produce: " + task.getNo());
                }
            };
        }
    
        public static void main(String[] args) {
            Model model = new BlockingQueueModel(3);
            Arrays.asList(1, 2).forEach(x -> new Thread(model.newRunnableConsumer()).start());
            Arrays.asList(1, 2, 3, 4, 5).forEach(x -> new Thread(model.newRunnableProducer()).start());
        }
    }
    实现一:BlockingQueue

    运行结果:

    由于数据操作和日志输出是两个事务,所以上述日志的绝对顺序未必是真实的数据操作顺序,但对于同一个任务号task.getNo,其consume日志一定出现在其produce日志之后,即:同一任务的消费行为一定发生在生产行为之后。

    实现二:wait && notify

    Object类提供的wait()方法与notifyAll()方法

    public class WaitNotifyModel implements Model {
    
        private final Object BUFFER_LOCK = new Object();
    
        private final Queue<Task> queue = new LinkedList<>();
        private final int capacity;
    
        public WaitNotifyModel(int capacity) {
            this.capacity = capacity;
        }
    
        private final AtomicInteger taskNo = new AtomicInteger(0);
    
        @Override
        public Runnable newRunnableConsumer() {
            return new AbstractConsumer() {
                @Override
                public void consume() throws InterruptedException {
                    synchronized (BUFFER_LOCK) {
                        while (queue.isEmpty()) {
                            BUFFER_LOCK.wait();
                        }
    
                        Task task = queue.poll();
                        assert task != null;
                        TimeUnit.MILLISECONDS.sleep(500 + (long) (Math.random() * 500));
                        System.out.println("consume: " + task.getNo());
                        BUFFER_LOCK.notifyAll();
                    }
                }
            };
        }
    
        @Override
        public Runnable newRunnableProducer() {
            return new AbstractProducer() {
                @Override
                public void produce() throws InterruptedException {
                    TimeUnit.MILLISECONDS.sleep((long) (Math.random() * 1000));
                    synchronized (BUFFER_LOCK) {
                        while (queue.size() == capacity) {
                            BUFFER_LOCK.wait();
                        }
                        Task task = new Task(taskNo.getAndIncrement());
                        queue.offer(task);
                        System.out.println("produce: " + task.getNo());
                        BUFFER_LOCK.notifyAll();
                    }
                }
            };
        }
    
        public static void main(String[] args) {
            Model model = new BlockingQueueModel(3);
            Arrays.asList(1, 2).forEach(x -> new Thread(model.newRunnableConsumer()).start());
            Arrays.asList(1, 2, 3, 4, 5).forEach(x -> new Thread(model.newRunnableProducer()).start());
        }
    }
    实现二: wait && notify

    朴素的wait && notify机制不那么灵活,但足够简单

    实现三:简单的Lock && Condition

    java.util.concurrent包提供的Lock && Condition,对于实现二的简单变形

    public class LockConditionModel implements Model {
    
        private final Lock BUFFER_LOCK = new ReentrantLock();
        private final Condition CONDITION = BUFFER_LOCK.newCondition();
        private final Queue<Task> queue = new LinkedList<>();
    
        private final int capacity;
    
        public LockConditionModel(int capacity) {
            this.capacity = capacity;
        }
    
        private final AtomicInteger taskNo = new AtomicInteger(0);
    
        @Override
        public Runnable newRunnableConsumer() {
            return new AbstractConsumer() {
                @Override
                public void consume() throws InterruptedException {
                    BUFFER_LOCK.lockInterruptibly();
                    try {
                        while (queue.isEmpty()) {
                            CONDITION.await();
                        }
    
                        Task task = queue.poll();
                        assert task != null;
                        TimeUnit.MILLISECONDS.sleep(500 + (long) (Math.random() * 500));
                        System.out.println("consume: " + task.getNo());
                        CONDITION.signalAll();
                    } finally {
                        BUFFER_LOCK.unlock();
                    }
                }
            };
        }
    
        @Override
        public Runnable newRunnableProducer() {
            return new AbstractProducer() {
                @Override
                public void produce() throws InterruptedException {
                    TimeUnit.MILLISECONDS.sleep((long) (Math.random() * 1000));
    
                    BUFFER_LOCK.lockInterruptibly();
    
                    try {
                        while (queue.size() == capacity) {
                            CONDITION.await();
                        }
                        Task task = new Task(taskNo.getAndIncrement());
                        queue.offer(task);
                        System.out.println("produce: " + task.getNo());
                        CONDITION.signalAll();
                    } finally {
                        BUFFER_LOCK.unlock();
                    }
                }
            };
        }
    
        public static void main(String[] args) {
            Model model = new BlockingQueueModel(3);
            Arrays.asList(1, 2).forEach(x -> new Thread(model.newRunnableConsumer()).start());
            Arrays.asList(1, 2, 3, 4, 5).forEach(x -> new Thread(model.newRunnableProducer()).start());
        }
    }
    实现三: lock && condition

    实现四:更高并发性能的Lock && Condition

    实现三有一个问题,通过实践可以发现,实现二,三的效率明显低于实现一,并发瓶颈很明显,因为在锁 BUFFER_LOCK 看来,任何消费者线程与生产者线程都是一样的。换句话说,同一时刻,最多只允许有一个线程(生产者或消费者,二选一)操作缓冲区 buffer。

    而实际上,如果缓冲区是一个队列的话,“生产者将产品入队”与“消费者将产品出队”两个操作之间没有同步关系,可以在队首出队的同时,在队尾入队。理想性能可提升至两倍。

    去掉这个瓶颈

    那么思路就简单了:需要两个锁 CONSUME_LOCKPRODUCE_LOCKCONSUME_LOCK控制消费者线程并发出队,PRODUCE_LOCK控制生产者线程并发入队;相应需要两个条件变量NOT_EMPTYNOT_FULLNOT_EMPTY负责控制消费者线程的状态(阻塞、运行),NOT_FULL负责控制生产者线程的状态(阻塞、运行)。以此让优化消费者与消费者(或生产者与生产者)之间是串行的;消费者与生产者之间是并行的。

    public class LockConditionPreferModel implements Model {
    
        private final Lock CONSUMER_LOCK = new ReentrantLock();
        private final Condition NOT_EMPTY_CONDITION = CONSUMER_LOCK.newCondition();
    
        private final Lock PRODUCER_LOCK = new ReentrantLock();
        private final Condition NOT_FULL_CONDITION = PRODUCER_LOCK.newCondition();
        private AtomicInteger bufLen = new AtomicInteger(0);
        private final Buffer<Task> buffer = new Buffer<>();
    
        private final int capacity;
    
        public LockConditionPreferModel(int capacity) {
            this.capacity = capacity;
        }
    
        private final AtomicInteger taskNo = new AtomicInteger(0);
    
        @Override
        public Runnable newRunnableConsumer() {
            return new AbstractConsumer() {
                @Override
                public void consume() throws InterruptedException {
                    int newBufSize;
                    CONSUMER_LOCK.lockInterruptibly();
                    try {
                        while (bufLen.get() == 0) {
                            System.out.println("buffer is empty...");
                            NOT_EMPTY_CONDITION.await();
                        }
    
                        Task task = buffer.poll();
                        newBufSize = bufLen.decrementAndGet();
                        assert task != null;
                        TimeUnit.MILLISECONDS.sleep(500 + (long) (Math.random() * 500));
                        System.out.println("consume: " + task.getNo());
                        if (newBufSize > 0) {
                            NOT_EMPTY_CONDITION.signalAll();
                        }
                    } finally {
                        CONSUMER_LOCK.unlock();
                    }
    
                    if (newBufSize < capacity) {
                        PRODUCER_LOCK.lockInterruptibly();
                        try {
                            NOT_FULL_CONDITION.signalAll();
                        } finally {
                            PRODUCER_LOCK.unlock();
                        }
                    }
                }
            };
        }
    
        @Override
        public Runnable newRunnableProducer() {
            return new AbstractProducer() {
                @Override
                public void produce() throws InterruptedException {
                    TimeUnit.MILLISECONDS.sleep((long) (Math.random() * 1000));
                    int newBufSize;
                    PRODUCER_LOCK.lockInterruptibly();
    
                    try {
                        while (bufLen.get() == capacity) {
                            System.out.println("buffer is full...");
                            NOT_FULL_CONDITION.await();
                        }
                        Task task = new Task(taskNo.getAndIncrement());
                        buffer.offer(task);
                        newBufSize = bufLen.incrementAndGet();
                        System.out.println("produce: " + task.getNo());
                        NOT_FULL_CONDITION.signalAll();
                    } finally {
                        PRODUCER_LOCK.unlock();
                    }
    
                    if (newBufSize > 0) {
                        CONSUMER_LOCK.unlock();
                        try {
                            NOT_EMPTY_CONDITION.signalAll();
                        } finally {
                            CONSUMER_LOCK.unlock();
                        }
                    }
                }
            };
        }
    
        private static class Buffer<E> {
            private Node head;
            private Node tail;
    
            Buffer() {
                head = tail = new Node(null);
            }
    
            private void offer(E e) {
                tail.next = new Node(e);
                tail = tail.next;
            }
    
            private E poll() {
                head = head.next;
                E e = head.item;
                head.item = null;
                return e;
            }
    
            private class Node {
                E item;
                Node next;
    
                Node(E item) {
                    this.item = item;
                }
            }
        }
    
        public static void main(String[] args) {
            Model model = new BlockingQueueModel(3);
            Arrays.asList(1, 2).forEach(x -> new Thread(model.newRunnableConsumer()).start());
            Arrays.asList(1, 2, 3, 4, 5).forEach(x -> new Thread(model.newRunnableProducer()).start());
        }
    }
    实现四 双lock && 双condition

    需要注意的是,由于需要同时在UnThreadSafe的缓冲区 buffer 上进行消费与生产,我们不能使用实现二、三中使用的队列了,需要自己实现一个简单的缓冲区 Buffer。Buffer要满足以下条件:

    • 在头部出队,尾部入队
    • 在poll()方法中只操作head
    • 在offer()方法中只操作tail

    实现要点:

    1. 持有两种锁

    2. 每次生产(/消费)结束会检验数据状态更新另一种锁,当然更新的过程要用相应的锁同步。

    还能进一步优化吗

    我们已经优化掉了消费者与生产者之间的瓶颈,还能进一步优化吗?

    如果可以,必然是继续优化消费者与消费者(或生产者与生产者)之间的并发性能。然而,消费者与消费者之间必须是串行的,因此,并发模型上已经没有地方可以继续优化了。

    不过在具体的业务场景中,一般还能够继续优化。如:

    • 并发规模中等,可考虑使用CAS代替重入锁
    • 模型上不能优化,但一个消费行为或许可以进一步拆解、优化,从而降低消费的延迟
    • 一个队列的并发性能达到了极限,可采用“多个队列”(如分布式消息队列等)

    补充一下LinkedBlockingQueue在新增和删除时候的各个方法的区别:

    一般情况建议用offer和poll,是即时操作,如果带时间的offer和poll相当于限时的同步等待

    永久的同步等待使用put和take(@see 上面的实现一)

  • 相关阅读:
    自动轮播
    哈夫曼树的应用-金条划分
    计算两个日期相差的天数
    数据结构之算术表达式
    动态规划-矩阵最短路径
    动态规划-换钱最少货币数
    字母数字密码破解
    荷兰国旗问题
    集合并集
    进制数位幸运数
  • 原文地址:https://www.cnblogs.com/balfish/p/7794494.html
Copyright © 2020-2023  润新知