曼-惠特尼U检验(Mann-Whitney检验)
How the Mann-Whitney test works
Mann-Whitney检验又叫做秩和检验,是比较没有配对的两个独立样本的非参数检验。思想是这样的:假定要检验两组数据之间有没有差异。首先,不管分组把所有数据排序。按照数值大小给定一个值叫做秩。最小的值秩为1,最大的为N(假定两个样本总共有N个观察值)。如果有相同的值,就得到相同的秩。相同的值的秩是他们的秩的平均值。如果两组的秩的和差距比较大,就会得出较小的p值,认为这两组间有显著差异。
How to think about the results of a Mann-Whitney test
样本量太小的话效度会很低。比如,如果总的数据只有7个或者更少的话,p值总是大于5%的。
Is the Mann-Whitney test the right test for these data?
分析之前要先看一下,Mann-Whitney 检验是否适合手头的问题。
问题 |
解释 |
“误差”是独立的吗? |
“误差”指的是每个值和中位数的差异。仅当误差的分布是随机的时候Mann-Whitney 检验的结果才有意义。一般要保证独立样本。样本不独立可能会导致误差不随机。 |
数据是配对的吗? |
如果数据是配对的,应该用Wilcoxon成对检验。 |
是只比较两组数据吗? |
Mann-Whitney 检验只用于两组数据的比较。如果要比较多组数据,可以用 Kruskal-Wallis 检验。用几次 Mann-Whitney 检验来比较多个组间的差异是不适合的,就如同ANOVA 不能用多次t检验代替一样。 |
两个分布的形状是相同的吗? |
Mann-Whitney 检验不需要假定数据符合某种分布,但是要求两个分布是相同的。如果两组的分布差异比较大,可能需要数据转换使之相近。 |
是否比较中位数? |
Mann-Whitney 检验比较的是两组的中位数。 |
数据分布时正态的吗? |
非参数检验的好处和弱点是不需要假定数据符合某种分布。非参数检验有时候更适合(当数据分布未知时),有时候效度较低(当已知分布时参数检验效度更高)。所以如果数据能够转换为正态分布,t检验将会有更高的效度。 |
曼-惠特尼U检验的步骤
Computation of the U test begins by arbitrarily designating two samples as group 1 and group 2.the data from the two groups are combined into one group ,with each data value retaining a group identifier of its original group.the pooled values are then ranked from 1 to n,with the smallest value being assigned a rank of 1.
The sum of the ranks of Values from group 1 is computed and designated as W1 and the sum of the ranks of values from group 2 is designated as W2.[1]
该方法的具体步骤如下:
第一步:将两组数据混合,并按照大小顺序编排等级。最小的数据等级为1,第二小的数据等级为2,以此类推(若有数据相等的情形,则取这几个数据排序的平均值作为其等级)。
第二步:分别求出两个样本的等级和W1、W2。
第三步:计算曼-惠特尼U检验统计量,n1为第一个样本的量,n2为第二个样本的量:
选择U1和U2中最小者与临界值Uα比较,当U < UA时,拒绝H0,接受H1。
当n1和n2都不小于10时,随机变量近似服从正态分布。
第四步:作出判断。
设第一个总体的均值为μ1,第二个总体的均值为μ2,则有:
1),如果Z < − Zα,则拒绝H0;
2),如果Z > Zα,则拒绝H0;
3),如果Z > − Zalpha / 2,则拒绝H0。
曼-惠特尼U检验的应用举例
下面是两种不同加工方式的菜粕在黄牛瘤胃内培养16h的干物质降解率,用曼-惠特尼U检验比较其有无差异:
两种加工方式的菜粕瘤胃培养16h的干物质降解率(%)
预压浸出组 | 等级排序 | 螺旋热榨组 | 等级排序 |
---|---|---|---|
39.33 | 3 | 42.91 | 5 |
44.10 | 8 | 44.69 | 10 |
35.89 | 1 | 44.54 | 9 |
43.35 | 6 | 45.31 | 11 |
47.61 | 13 | 37.73 | 2 |
43.71 | 7 | 48.75 | 14 |
46.71 | 12 | ||
41.85 | 4 |
先按照大小顺序排列等级(见上表),而后计算W1 = 38,W2 = 67,n1 = 6,n2 = 8。
假设两种菜粕的16h瘤胃干物质降解率除了平均水平以外在其它方面无差异,即检验:
- H0:两种菜粕的16h瘤胃干物质降解率无差异;
- H1:两种菜粕的16h瘤胃干物质降解率有差异。
计算U值:
U2值较小,选取U2与Uα(α=0.05)比较,通过查表(附表)可知Uα = 8,U2 > Uα,即接受H0,认为两种加工方式的菜粕瘤胃培养16h的干物质降解率无显著差异。
n2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n1 | |||||||||||||||
1 | |||||||||||||||
2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | |||||||
3 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | ||||
4 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
5 | 0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 | ||
6 | 1 | 2 | 3 | 5 | 6 | 8 | 10 | 11 | 13 | 14 | 16 | 17 | 19 | ||
7 | 1 | 3 | 5 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | ||
8 | 0 | 2 | 4 | 6 | 8 | 10 | 13 | 15 | 17 | 19 | 22 | 24 | 26 | 29 | |
9 | 0 | 2 | 4 | 7 | 10 | 12 | 15 | 17 | 20 | 23 | 26 | 28 | 31 | 34 | |
10 | 0 | 3 | 5 | 8 | 11 | 14 | 17 | 20 | 23 | 26 | 29 | 33 | 36 | 39 | |
11 | 0 | 3 | 6 | 9 | 13 | 16 | 19 | 23 | 26 | 30 | 33 | 37 | 40 | 44 | |
12 | 1 | 4 | 7 | 11 | 14 | 18 | 22 | 26 | 29 | 33 | 37 | 41 | 45 | 49 | |
13 | 1 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 33 | 37 | 41 | 45 | 50 | 54 | |
14 | 1 | 5 | 9 | 13 | 17 | 22 | 26 | 31 | 36 | 40 | 45 | 50 | 55 | 59 | |
15 | 1 | 5 | 10 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 | 64 |
n2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n1 | |||||||||||||||
1 | |||||||||||||||
2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | |||||||
3 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | ||||
4 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
5 | 0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 | ||
6 | 1 | 2 | 3 | 5 | 6 | 8 | 10 | 11 | 13 | 14 | 16 | 17 | 19 | ||
7 | 1 | 3 | 5 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | ||
8 | 0 | 2 | 4 | 6 | 8 | 10 | 13 | 15 | 17 | 19 | 22 | 24 | 26 | 29 | |
9 | 0 | 2 | 4 | 7 | 10 | 12 | 15 | 17 | 20 | 23 | 26 | 28 | 31 | 34 | |
10 | 0 | 3 | 5 | 8 | 11 | 14 | 17 | 20 | 23 | 26 | 29 | 33 | 36 | 39 | |
11 | 0 | 3 | 6 | 9 | 13 | 16 | 19 | 23 | 26 | 30 | 33 | 37 | 40 | 44 | |
12 | 1 | 4 | 7 | 11 | 14 | 18 | 22 | 26 | 29 | 33 | 37 | 41 | 45 | 49 | |
13 | 1 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 33 | 37 | 41 | 45 | 50 | 54 | |
14 | 1 | 5 | 9 | 13 | 17 | 22 | 26 | 31 | 36 | 40 | 45 | 50 | 55 | 59 | |
15 | 1 | 5 | 10 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 | 64 |
n2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n1 | |||||||||||||||
1 | |||||||||||||||
2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | |||||||
3 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | ||||
4 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
5 | 0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 | ||
6 | 1 | 2 | 3 | 5 | 6 | 8 | 10 | 11 | 13 | 14 | 16 | 17 | 19 | ||
7 | 1 | 3 | 5 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | ||
8 | 0 | 2 | 4 | 6 | 8 | 10 | 13 | 15 | 17 | 19 | 22 | 24 | 26 | 29 | |
9 | 0 | 2 | 4 | 7 | 10 | 12 | 15 | 17 | 20 | 23 | 26 | 28 | 31 | 34 | |
10 | 0 | 3 | 5 | 8 | 11 | 14 | 17 | 20 | 23 | 26 | 29 | 33 | 36 | 39 | |
11 | 0 | 3 | 6 | 9 | 13 | 16 | 19 | 23 | 26 | 30 | 33 | 37 | 40 | 44 | |
12 | 1 | 4 | 7 | 11 | 14 | 18 | 22 | 26 | 29 | 33 | 37 | 41 | 45 | 49 | |
13 | 1 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 33 | 37 | 41 | 45 | 50 | 54 | |
14 | 1 | 5 | 9 | 13 | 17 | 22 | 26 | 31 | 36 | 40 | 45 | 50 | 55 | 59 | |
15 | 1 | 5 | 10 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 | 64 |