• Rabbitmq整理


    一 消息队列介绍

    1.1 介绍

    消息队列就是基础数据结构中的“先进先出”的一种数据机构。想一下,生活中买东西,需要排队,先排的人先买消费,就是典型的“先进先出”

    image-20200907000210863

    1.2 MQ解决什么问题

    MQ是一直存在,不过随着微服务架构的流行,成了解决微服务之间问题的常用工具。

    应用解耦

    以电商应用为例,应用中有订单系统、库存系统、物流系统、支付系统。用户创建订单后,如果耦合调用库存系统、物流系统、支付系统,任何一个子系统出了故障,都会造成下单操作异常。

    当转变成基于消息队列的方式后,系统间调用的问题会减少很多,比如物流系统因为发生故障,需要几分钟来修复。在这几分钟的时间里,物流系统要处理的内存被缓存在消息队列中,用户的下单操作可以正常完成。当物流系统恢复后,继续处理订单信息即可,中单用户感受不到物流系统的故障。提升系统的可用性

    image-20200907000246573

    流量消峰

    举个栗子,如果订单系统最多能处理一万次订单,这个处理能力应付正常时段的下单时绰绰有余,正常时段我们下单一秒后就能返回结果。但是在高峰期,如果有两万次下单操作系统是处理不了的,只能限制订单超过一万后不允许用户下单。

    使用消息队列做缓冲,我们可以取消这个限制,把一秒内下的订单分散成一段时间来处理,这事有些用户可能在下单十几秒后才能收到下单成功的操作,但是比不能下单的体验要好。

    消息分发

    多个服务队数据感兴趣,只需要监听同一类消息即可处理。

    例如A产生数据,B对数据感兴趣。如果没有消息的队列A每次处理完需要调用一下B服务。过了一段时间C对数据也感性,A就需要改代码,调用B服务,调用C服务。只要有服务需要,A服务都要改动代码。很不方便。

    有了消息队列后,A只管发送一次消息,B对消息感兴趣,只需要监听消息。C感兴趣,C也去监听消息。A服务作为基础服务完全不需要有改动

    异步消息

    有些服务间调用是异步的,例如A调用B,B需要花费很长时间执行,但是A需要知道B什么时候可以执行完,以前一般有两种方式,A过一段时间去调用B的查询api查询。或者A提供一个callback api,B执行完之后调用api通知A服务。这两种方式都不是很优雅

    使用消息总线,可以很方便解决这个问题,A调用B服务后,只需要监听B处理完成的消息,当B处理完成后,会发送一条消息给MQ,MQ会将此消息转发给A服务。

    这样A服务既不用循环调用B的查询api,也不用提供callback api。同样B服务也不用做这些操作。A服务还能及时的得到异步处理成功的消息

    1.3 常见消息队列及比较

    1

    结论:

    Kafka在于分布式架构,RabbitMQ基于AMQP协议来实现,RocketMQ/思路来源于kafka,改成了主从结构,在事务性可靠性方面做了优化。广泛来说,电商、金融等对事务性要求很高的,可以考虑RabbitMQ和RocketMQ,对性能要求高的可考虑Kafka

    二 Rabbitmq安装

    官网:https://www.rabbitmq.com/getstarted.html

    2.1 服务端原生安装

    # 安装配置epel源
    # 安装erlang
    yum -y install erlang
    # 安装RabbitMQ
    yum -y install rabbitmq-server
    

    2.2 服务端Docker安装

    docker pull rabbitmq:management
    docker run -di --name Myrabbitmq -e RABBITMQ_DEFAULT_USER=admin -e RABBITMQ_DEFAULT_PASS=admin -p 15672:15672 -p 5672:5672 rabbitmq:management
    

    2.3 客户端安装

    pip3 install pika
    

    2.4 设置用户和密码

    rabbitmqctl add_user lqz 123
    # 设置用户为administrator角色
    rabbitmqctl set_user_tags lqz administrator
    # 设置权限
    rabbitmqctl set_permissions -p "/" root ".*" ".*" ".*"
    
    # 然后重启rabbiMQ服务
    systemctl reatart rabbitmq-server
     
    # 然后可以使用刚才的用户远程连接rabbitmq server了。
    

    三 基于Queue实现生产者消费者模型

    import Queue
    import threading
    
    message = Queue.Queue(10)
    
    def producer(i):
        while True:
            message.put(i)
    
    def consumer(i):
        while True:
            msg = message.get()
    
    for i in range(12):
        t = threading.Thread(target=producer, args=(i,))
        t.start()
    
    for i in range(10):
        t = threading.Thread(target=consumer, args=(i,))
        t.start()
    

    四 基本使用(生产者消费者模型)

    对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列。

    生产者

    import pika
    # 无密码
    # connection = pika.BlockingConnection(pika.ConnectionParameters('127.0.0.1'))
    
    # 有密码
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    # 声明一个队列(创建一个队列)
    channel.queue_declare(queue='lqz')
    
    channel.basic_publish(exchange='',
                          routing_key='lqz', # 消息队列名称
                          body='hello world')
    connection.close()
    

    消费者

    import pika
    
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    # 声明一个队列(创建一个队列)
    channel.queue_declare(queue='lqz')
    
    def callback(ch, method, properties, body):
        print("消费者接受到了任务: %r" % body)
    
    channel.basic_consume(queue='lqz',on_message_callback=callback,auto_ack=True)
    
    channel.start_consuming()
    

    五 消息安全之ack

    生产者

    import pika
    # 无密码
    # connection = pika.BlockingConnection(pika.ConnectionParameters('127.0.0.1'))
    
    # 有密码
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    # 声明一个队列(创建一个队列)
    channel.queue_declare(queue='lqz')
    
    channel.basic_publish(exchange='',
                          routing_key='lqz', # 消息队列名称
                          body='hello world')
    connection.close()
    

    消费者

    import pika
    
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    # 声明一个队列(创建一个队列)
    channel.queue_declare(queue='lqz')
    
    def callback(ch, method, properties, body):
        print("消费者接受到了任务: %r" % body)
        # 通知服务端,消息取走了,如果auto_ack=False,不加下面,消息会一直存在
        # ch.basic_ack(delivery_tag=method.delivery_tag)
    
    channel.basic_consume(queue='lqz',on_message_callback=callback,auto_ack=False)
    
    channel.start_consuming()
    

    六 消息安全之durable持久化

    生产者

    import pika
    # 无密码
    # connection = pika.BlockingConnection(pika.ConnectionParameters('127.0.0.1'))
    
    # 有密码
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    # 声明一个队列(创建一个队列),durable=True支持持久化,队列必须是新的才可以
    channel.queue_declare(queue='lqz1',durable=True)
    
    channel.basic_publish(exchange='',
                          routing_key='lqz1', # 消息队列名称
                          body='111',
                          properties=pika.BasicProperties(
                              delivery_mode=2,  # make message persistent,消息也持久化
                          )
                          )
    connection.close()
    

    消费者

    import pika
    
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    # 声明一个队列(创建一个队列)
    channel.queue_declare(queue='lqz1')
    
    def callback(ch, method, properties, body):
        print("消费者接受到了任务: %r" % body)
        # 通知服务端,消息取走了,如果auto_ack=False,不加下面,消息会一直存在
        # ch.basic_ack(delivery_tag=method.delivery_tag)
    
    channel.basic_consume(queue='lqz1',on_message_callback=callback,auto_ack=False)
    
    channel.start_consuming()
    

    七 闲置消费

    正常情况如果有多个消费者,是按照顺序第一个消息给第一个消费者,第二个消息给第二个消费者

    但是可能第一个消息的消费者处理消息很耗时,一直没结束,就可以让第二个消费者优先获得闲置的消息

    生产者

    import pika
    # 无密码
    # connection = pika.BlockingConnection(pika.ConnectionParameters('127.0.0.1'))
    
    # 有密码
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    # 声明一个队列(创建一个队列),durable=True支持持久化,队列必须是新的才可以
    channel.queue_declare(queue='lqz123',durable=True)
    
    channel.basic_publish(exchange='',
                          routing_key='lqz123', # 消息队列名称
                          body='111',
                          properties=pika.BasicProperties(
                              delivery_mode=2,  # make message persistent,消息也持久化
                          )
                          )
    connection.close()
    

    消费者

    import pika
    
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    # 声明一个队列(创建一个队列)
    # channel.queue_declare(queue='lqz123')
    
    def callback(ch, method, properties, body):
        print("消费者接受到了任务: %r" % body)
        # 通知服务端,消息取走了,如果auto_ack=False,不加下面,消息会一直存在
        ch.basic_ack(delivery_tag=method.delivery_tag)
    
    channel.basic_qos(prefetch_count=1) #####就只有这一句话 谁闲置谁获取,没必要按照顺序一个一个来
    channel.basic_consume(queue='lqz123',on_message_callback=callback,auto_ack=False)
    
    channel.start_consuming()
    

    八 发布订阅

    发布者

    import pika
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    channel.exchange_declare(exchange='m1',exchange_type='fanout')
    
    channel.basic_publish(exchange='m1',
                          routing_key='',
                          body='lqz nb')
    
    connection.close()
    

    订阅者(启动几次订阅者会生成几个队列)

    import pika
    
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    # exchange='m1',exchange(秘书)的名称
    # exchange_type='fanout' , 秘书工作方式将消息发送给所有的队列
    channel.exchange_declare(exchange='m1',exchange_type='fanout')
    
    # 随机生成一个队列
    result = channel.queue_declare(queue='',exclusive=True)
    queue_name = result.method.queue
    print(queue_name)
    # 让exchange和queque进行绑定.
    channel.queue_bind(exchange='m1',queue=queue_name)
    
    
    def callback(ch, method, properties, body):
        print("消费者接受到了任务: %r" % body)
    
    channel.basic_consume(queue=queue_name,on_message_callback=callback,auto_ack=True)
    
    channel.start_consuming()
    

    九 发布订阅高级之Routing(按关键字匹配)

    发布者

    import pika
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    channel.exchange_declare(exchange='m2',exchange_type='direct')
    
    channel.basic_publish(exchange='m2',
                          routing_key='bnb', # 多个关键字,指定routing_key
                          body='lqz nb')
    
    connection.close()
    

    订阅者1

    import pika
    
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    # exchange='m1',exchange(秘书)的名称
    # exchange_type='direct' , 秘书工作方式将消息发送给不同的关键字
    channel.exchange_declare(exchange='m2',exchange_type='direct')
    
    # 随机生成一个队列
    result = channel.queue_declare(queue='',exclusive=True)
    queue_name = result.method.queue
    print(queue_name)
    # 让exchange和queque进行绑定.
    channel.queue_bind(exchange='m2',queue=queue_name,routing_key='nb')
    channel.queue_bind(exchange='m2',queue=queue_name,routing_key='bnb')
    
    
    def callback(ch, method, properties, body):
        print("消费者接受到了任务: %r" % body)
    
    channel.basic_consume(queue=queue_name,on_message_callback=callback,auto_ack=True)
    
    channel.start_consuming()
    

    订阅者2

    import pika
    
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    # exchange='m1',exchange(秘书)的名称
    # exchange_type='direct' , 秘书工作方式将消息发送给不同的关键字
    channel.exchange_declare(exchange='m2',exchange_type='direct')
    
    # 随机生成一个队列
    result = channel.queue_declare(queue='',exclusive=True)
    queue_name = result.method.queue
    print(queue_name)
    # 让exchange和queque进行绑定.
    channel.queue_bind(exchange='m2',queue=queue_name,routing_key='nb')
    
    
    
    def callback(ch, method, properties, body):
        print("消费者接受到了任务: %r" % body)
    
    channel.basic_consume(queue=queue_name,on_message_callback=callback,auto_ack=True)
    
    channel.start_consuming()
    
    

    九 发布订阅高级之Topic(按关键字模糊匹配)

    发布者

    import pika
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    channel.exchange_declare(exchange='m3',exchange_type='topic')
    
    channel.basic_publish(exchange='m3',
                          # routing_key='lqz.handsome', #都能收到
                          routing_key='lqz.handsome.xx', #只有lqz.#能收到
                          body='lqz nb')
    
    connection.close()
    
    

    订阅者1

    *只能加一个单词

    #可以加任意单词字符

    import pika
    
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    # exchange='m1',exchange(秘书)的名称
    # exchange_type='direct' , 秘书工作方式将消息发送给不同的关键字
    channel.exchange_declare(exchange='m3',exchange_type='topic')
    
    # 随机生成一个队列
    result = channel.queue_declare(queue='',exclusive=True)
    queue_name = result.method.queue
    print(queue_name)
    # 让exchange和queque进行绑定.
    channel.queue_bind(exchange='m3',queue=queue_name,routing_key='lqz.#')
    
    
    
    def callback(ch, method, properties, body):
        print("消费者接受到了任务: %r" % body)
    
    channel.basic_consume(queue=queue_name,on_message_callback=callback,auto_ack=True)
    
    channel.start_consuming()
    
    

    订阅者2

    import pika
    
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    # exchange='m1',exchange(秘书)的名称
    # exchange_type='topic' , 模糊匹配
    channel.exchange_declare(exchange='m3',exchange_type='topic')
    
    # 随机生成一个队列
    result = channel.queue_declare(queue='',exclusive=True)
    queue_name = result.method.queue
    print(queue_name)
    # 让exchange和queque进行绑定.
    channel.queue_bind(exchange='m3',queue=queue_name,routing_key='lqz.*')
    
    
    def callback(ch, method, properties, body):
      	queue_name = result.method.queue # 发送的routing_key是什么
        print("消费者接受到了任务: %r" % body)
    
    channel.basic_consume(queue=queue_name,on_message_callback=callback,auto_ack=True)
    
    channel.start_consuming()
    
    

    十 基于rabbitmq实现rpc

    服务端

    import pika
    credentials = pika.PlainCredentials("admin","admin")
    connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166',credentials=credentials))
    channel = connection.channel()
    
    # 起翰监听任务队列
    channel.queue_declare(queue='rpc_queue')
    
    def on_request(ch, method, props, body):
        n = int(body)
        response = n + 100
        # props.reply_to  要放结果的队列.
        # props.correlation_id  任务
        ch.basic_publish(exchange='',
                         routing_key=props.reply_to,
                         properties=pika.BasicProperties(correlation_id= props.correlation_id),
                         body=str(response))
        ch.basic_ack(delivery_tag=method.delivery_tag)
    
    channel.basic_qos(prefetch_count=1)
    channel.basic_consume( queue='rpc_queue',on_message_callback=on_request,)
    channel.start_consuming()
    
    

    客户端

    import pika
    import uuid
    
    class FibonacciRpcClient(object):
        def __init__(self):
            credentials = pika.PlainCredentials("admin", "admin")
            self.connection = pika.BlockingConnection(pika.ConnectionParameters('101.133.225.166', credentials=credentials))
            self.channel = self.connection.channel()
    
            # 随机生成一个消息队列(用于接收结果)
            result = self.channel.queue_declare(queue='',exclusive=True)
            self.callback_queue = result.method.queue
    
            # 监听消息队列中是否有值返回,如果有值则执行 on_response 函数(一旦有结果,则执行on_response)
            self.channel.basic_consume(queue=self.callback_queue,on_message_callback=self.on_response, auto_ack=True)
    
        def on_response(self, ch, method, props, body):
            if self.corr_id == props.correlation_id:
                self.response = body
    
        def call(self, n):
            self.response = None
            self.corr_id = str(uuid.uuid4())
    
            # 客户端 给 服务端 发送一个任务:  任务id = corr_id / 任务内容 = '30' / 用于接收结果的队列名称
            self.channel.basic_publish(exchange='',
                                       routing_key='rpc_queue', # 服务端接收任务的队列名称
                                       properties=pika.BasicProperties(
                                             reply_to = self.callback_queue, # 用于接收结果的队列
                                             correlation_id = self.corr_id, # 任务ID
                                             ),
                                       body=str(n))
            while self.response is None:
                self.connection.process_data_events()
    
            return self.response
    
    fibonacci_rpc = FibonacciRpcClient()
    
    response = fibonacci_rpc.call(50)
    print('返回结果:',response)
    
    
  • 相关阅读:
    记一次诡异的调优
    java动态代理学习笔记
    c#反射机制学习和利用反射获取类型信息
    php开启ssl的方法
    关于java中split的使用
    c#使用反射调用类型成员示例
    C#关于反射加载的问题
    Twitter:使用Netty 4来减少GC开销
    Java中如何修改Jar中的内容
    Android中自定义视图View之---前奏篇
  • 原文地址:https://www.cnblogs.com/bailongcaptain/p/13632578.html
Copyright © 2020-2023  润新知