• 【洛谷P2912】[USACO08OCT]牧场散步Pasture Walking


    题目描述

    The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i.

    Some pairs of pastures are connected by one of N-1 bidirectional walkways that the cows can traverse. Walkway i connects pastures A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has a length of L_i (1 <= L_i <= 10,000).

    The walkways are set up in such a way that between any two distinct pastures, there is exactly one path of walkways that travels between them. Thus, the walkways form a tree.

    The cows are very social and wish to visit each other often. Ever in a hurry, they want you to help them schedule their visits by computing the lengths of the paths between 1 <= L_i <= 10,000 pairs of pastures (each pair given as a query p1,p2 (1 <= p1 <= N; 1 <= p2 <= N).

    POINTS: 200

    有N(2<=N<=1000)头奶牛,编号为1到W,它们正在同样编号为1到N的牧场上行走.为了方 便,我们假设编号为i的牛恰好在第i号牧场上.

    有一些牧场间每两个牧场用一条双向道路相连,道路总共有N - 1条,奶牛可以在这些道路 上行走.第i条道路把第Ai个牧场和第Bi个牧场连了起来(1 <= A_i <= N; 1 <= B_i <= N),而它的长度 是 1 <= L_i <= 10,000.在任意两个牧场间,有且仅有一条由若干道路组成的路径相连.也就是说,所有的道路构成了一棵树.

    奶牛们十分希望经常互相见面.它们十分着急,所以希望你帮助它们计划它们的行程,你只 需要计算出Q(1 < Q < 1000)对点之间的路径长度•每对点以一个询问p1,p2 (1 <= p1 <= N; 1 <= p2 <= N). 的形式给出.

    输入输出格式

    输入格式:

    • Line 1: Two space-separated integers: N and Q

    • Lines 2..N: Line i+1 contains three space-separated integers: A_i, B_i, and L_i

    • Lines N+1..N+Q: Each line contains two space-separated integers representing two distinct pastures between which the cows wish to travel: p1 and p2

    输出格式:

    • Lines 1..Q: Line i contains the length of the path between the two pastures in query i.

    输入输出样例

    输入样例#1:
    4 2 
    2 1 2 
    4 3 2 
    1 4 3 
    1 2 
    3 2 
    
    输出样例#1:
    2 
    7 
    

    说明

    Query 1: The walkway between pastures 1 and 2 has length 2.

    Query 2: Travel through the walkway between pastures 3 and 4, then the one between 4 and 1, and finally the one between 1 and 2, for a total length of 7.

    题解:

    LCA问题,dis[x]表示x到根节点的距离,设x,y的最近公共祖先为z,则x,y之间的距离为dis[x]+dis[y]-2*dis[z]。

    倍增:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int maxn=1000+5;
    inline int read()
    {
        int x=0,f=1; char ch=getchar();
        while(ch<'0'||ch>'9') {if(ch=='-')f=-1; ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0'; ch=getchar();}
        return x*f;
    }
    int n,m,num;
    int head[maxn],f[maxn][20],dep[maxn],dis[maxn];
    bool vis[maxn];
    struct node
    {
        int next,to,dist;
    }e[maxn<<1];
    inline void add(int from,int to,int dist)
    {
        e[++num].next=head[from];
        e[num].to=to;
        e[num].dist=dist;
        head[from]=num;
    }
    inline void dfs(int x,int d)
    {
        vis[x]=1;dep[x]=d;
        for(int i=head[x];i;i=e[i].next)
        {
            int to=e[i].to;
            if(!vis[to])
            {
                dis[to]=dis[x]+e[i].dist;
                f[to][0]=x;
                dfs(to,d+1);
            }
        }
    }
    inline int lca(int a,int b)
    {
        if(dep[a]<dep[b]){int t=a;a=b;b=t;}
        int d=dep[a]-dep[b];
        for(int i=0;i<=10;i++)
        if(d&(1<<i)) a=f[a][i];
        if(a==b) return a;
        for(int i=10;i>=0;i--)
        if(f[a][i]!=f[b][i])
        {
            a=f[a][i];
            b=f[b][i];
        }
        return f[a][0];
    }
    int main()
    {
        n=read();m=read();
        for(int i=1;i<n;i++)
        {
            int x,y,z;
            x=read();y=read();z=read();
            add(x,y,z);add(y,x,z);
        }
        dfs(1,1);
        for(int j=1;j<=10;j++)
        for(int i=1;i<=n;i++)
        f[i][j]=f[f[i][j-1]][j-1];
        for(int i=1;i<=m;i++)
        {
            int a,b;
            a=read();b=read();
            printf("%d
    ",dis[a]+dis[b]-(dis[lca(a,b)]<<1));
        }
        return 0;
    }
    View Code

    tarjan算法:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int maxn=1000+5;
    inline int read()
    {
        int x=0,f=1; char ch=getchar();
        while(ch<'0'||ch>'9') {if(ch=='-')f=-1; ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0'; ch=getchar();}
        return x*f;
    }
    int n,m,num,qnum;
    int head[maxn],qhead[maxn],father[maxn],a[maxn][3],dis[maxn];
    bool vis[maxn];
    struct node
    {
        int next,to,v;
    }e[maxn<<1],q[maxn<<1];
    void add(int from,int to,int v)
    {
        e[++num].next=head[from];
        e[num].to=to;
        e[num].v=v;
        head[from]=num;
    }
    void qadd(int from,int to,int v)
    {
        q[++qnum].next=qhead[from];
        q[qnum].to=to;
        q[qnum].v=v;
        qhead[from]=qnum;
    }
    int find(int x)
    {
        if(x!=father[x]) father[x]=find(father[x]);
        return father[x];
    }
    void merge(int x,int y)
    {
        int r1=find(x);
        int r2=find(y);
        father[r1]=r2;
    }
    void tarjan(int x)
    {
        vis[x]=1;
        for(int i=qhead[x];i;i=q[i].next)
        {
            int to=q[i].to,v=q[i].v;
            if(vis[to]) a[v][2]=find(to);
        }
        for(int i=head[x];i;i=e[i].next)
        {
            int to=e[i].to;
            if(!vis[to])
            {
                dis[to]=dis[x]+e[i].v;
                tarjan(to);
                merge(to,x);
            }
        }
    }
    int main()
    {
        n=read();m=read();
        for(int i=1;i<=n;i++) father[i]=i; 
        for(int i=1;i<n;i++)
        {
            int x,y,z;
            x=read();y=read();z=read();
            add(x,y,z);add(y,x,z);
        }
        for(int i=1;i<=m;i++)
        {
            a[i][0]=read();a[i][1]=read();
            qadd(a[i][0],a[i][1],i);
            qadd(a[i][1],a[i][0],i);
        }
        dis[1]=0;
        tarjan(1);
        for(int i=1;i<=m;i++)
        printf("%d
    ",dis[a[i][0]]+dis[a[i][1]]-(dis[a[i][2]]<<1));
        return 0;
    }
        
    View Code
  • 相关阅读:
    Android+Eclipse+Java:在“正在启动 CrazySnake”期间发生了内部错误, java.lang.NullPointerException
    ActivityManager: Warning: Activity not started, its current task has been brought to the front 的的问题
    CLR via C#(15)--String,熟悉而又陌生
    CLR via C#(14)-可空值类型,关于?和??的故事
    CLR via C#(13)-浅谈事件
    CLR via C#(12)-委托Delegate
    CLR via C#(11)-无参属性、有参数属性(索引器)
    CLR via C#(10)-参数
    CLR via C#(09)-扩展方法
    CLR via C#(08)-操作符
  • 原文地址:https://www.cnblogs.com/bahl/p/7260320.html
Copyright © 2020-2023  润新知