标签类:
有时候,可能会遇到带有两种甚至更多钟风格的类的实例的类,并包含表示实例风格的(tag)域。例如下面这个类,它能够表示圆形或者矩形:
/** * 类层次优先与标签类 * @author weishiyao * */ // Tagged class - vastly inferior to a class hierarchy public class Figure1{ enum Shape { RECTANGLE, CIRCLE } // Tag field - the shape of this figure final Shape shape; // These field are use only if shape if RECTANGLE double length; double width; // This field is use only if shape is CIRCLE double radius; // Constructor for circle public Figure1(double radius) { shape = Shape.CIRCLE; this.radius = radius; } // Constructor for rectangle public Figure1(double length, double width) { shape = Shape.RECTANGLE; this.length = length; this.width = width; } double area() { switch (shape) { case RECTANGLE: return length * width; case CIRCLE: return Math.PI * (radius * radius); default: throw new AssertionError(); } } }
这种标签类有着许多缺点:
1.它们中充斥着样板代码,包括枚举声明,标签域以及条件语句。由于许多个实现乱七八糟的挤在了单个类中,破坏了可读性。
2.内存占用也增加了,因为实例承担了属于其他风格的不相关的域。
3.域也不能做成final类型的,除非构造器初始化了不相关的域,产生了更多的样板代码。构造器必须不借助编译器,来设置标签域,并且初始化正确的数据域;如果初始化了错误的域,程序就会在运行的时候出错。
4.无法给标签类添加风格,除非可以修改源文件,如果一定要添加风格,就必须给每个条件语句都添加一个条件,否则就会在运行的时候失败。
5.最后,实例的数据类型没有提供任何关于其风格的线索
总结:标签类过于冗长、容易出错,并且效率低下
幸运的是,面向对象的语言java,提供了其他更好的方法来定义能表示多种风格对象的单个数据类型:子类型化。标签类正是类层次的一种简单效仿。
为了将标签类转化成类层次,首先要为标签类中的每一个方法都定义一个包含抽象方法的抽象类,这每个方法的行为都依赖于标签值。在Figure类中,只有一个这样的方法:area。这个抽象类是类层次的根。如果还有其他的方法行为不依赖于某个标签的值,就把这样的方法放到这个类中。同样的,如果所有的方法都用到了某些数据域,就应该把他们放在这个类中。在Figure类中,不存在这种类型独立的方法或者数据域。
/** * 类层次优于标签类 * @author weishiyao * */ // Class hierarchy replacement for a tagged class abstract class Figure2 { abstract double area(); } class Circle extends Figure2 { final double radius; Circle(double radius) { this.radius = radius; } double area() { return Math.PI * (radius * radius); } } class Rectangle extends Figure2 { final double length; final double width; Rectangle(double length, double width) { this.length = length; this.width = width; } double area() { return length * width; } }
这个类纠正了前面提到过的标签类的所有缺点。这段代码简单且清楚,没有包含在原来版本中所见到的所有样板代码。每个类型都有自己的类,这些类都没有受到不相关的数据域的拖累。所有的域都是final的。编译器确保每个类的构造器都初始化它的数据域,对于根类中声明的每个抽象方法,都确保有一个实现。这样就杜绝了由于遗漏switch case而导致运行失败的可能性。多个程序员都可以独立的扩展层次结构,并且不用访问根类的资源代码就能互相操作。每种类型都有一种相关的独立的数据类型,允许程序员指明变量类型,限制变量,并将参数输入到特殊的类型。
类层次的另一个好处在于,它们可以用来反应类型之间本质上的层次关系,有助于增强灵活性,并更好的进行编译时类型检查。
总而言之,标签类很少有适用的时候。当你想要编写一个包含显示的标签域的类时,应该考虑一下,这个标签是否可以被取消,这个类是否可以用类层次来代替,当你遇到一个包含标签域的现有类时,就要考虑将它重构到一个层次结构中去。