题意
对于一个给定的(S={a1,a2,a3,…,an}),若有(P={ax1,ax2,ax3,…,axm}),满足((x1 < x2 < … < xm))且((ax1 < ax 2 < … < axm))。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给出(S)序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先(x1)最小,如果不唯一,再看(x2)最小……),如果不存在长度为(Li)的上升序列,则打印Impossible.
题解
傻逼题。LIS搞。输出贪心。
其实这份代码会PE
#include<set>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
inline int read() {
int x = 0, flag = 1; char ch = getchar();
while (ch > '9' || ch < '0') { if (ch == '-') flag = -1; ch = getchar(); }
while (ch <= '9' && ch >= '0') { x = x * 10 + ch - '0'; ch = getchar(); }
return x * flag;
}
#define rep(ii, aa, bb) for (int ii = aa; ii <= bb; ii++)
#define drp(ii, aa, bb) for (int ii = aa; ii >= bb; ii--)
#define ll long long
#define N 10001
int a[N], f[N];
int main() {
int n = read(), maxL = 1;
rep(i, 1, n) a[i] = read(), f[i] = 1;
drp(i, n, 1) drp(j, n, i + 1) if (a[j] > a[i]) maxL = max(maxL, (f[i] = max(f[i], f[j] + 1)));
int q = read();
while (q--) {
int L = read();
if (L > maxL) { puts("Impossible
"); continue; }
int mn = 0;
rep(i, 1, n) if (f[i] >= L && a[i] > mn) {
printf("%d", a[i]); if (L != 1) printf(" ");
mn = a[i]; if (--L == 0) break;
}
printf("
");
}
return 0;
}