Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
思路:二分查找法,找到目标值的范围,时间复杂度在O(logn)。先找出左边第一个等于目标值的位置,再找出右边最后一个等于目标值的位置,然后返回这个范围。
class Solution { public: int findleft(int A[],int n,int target) { if(n==0) return -1; int left=0; int right=n-1; while(left<right) { int mid=(left+right)>>1; if(A[mid]>=target) right=mid; else left=mid+1; } if(target==A[left]) return left; else return -1; } int findright(int A[],int n,int target) { if(n==0) return -1; int left=0; int right=n-1; while(left<=right) { int mid=(left+right)>>1; if(A[mid]>target) right=mid-1; else left=mid+1; } if(A[right]==target) return right; else return -1; } vector<int> searchRange(int A[], int n, int target) { vector<int> result(2); result.clear(); for(int i=0;i<2;i++) result.push_back(-1); int left=findleft(A,n,target); int right=findright(A,n,target); result[0]=left; result[1]=right; return result; } };