• Tensorflow搭建CNN实现验证码识别


    完整代码:GitHub
    我的简书:Awesome_Tang的简书
    更好的阅读体验可访问我的Kesci Lab:AwesomeTang的Kesci Lab

    整个项目代码分为三部分:

    • Generrate_Captcha:
      • 生成验证码图片(训练集,验证集和测试集);
      • 读取图片数据和标签(标签即为图片文件名);
    • cnn_model:卷积神经网络;
    • driver:模型训练及评估。

    Generate Captcha

    配置项
    class Config(object):
        width = 160  # 验证码图片的宽
        height = 60  # 验证码图片的高
        char_num = 4  # 验证码字符个数
        characters = range(10)	# 数字[0,9]
        test_folder = 'test'	# 测试集文件夹,下同
        train_folder = 'train'
        validation_folder = 'validation'
        tensorboard_folder = 'tensorboard'  # tensorboard的log路径
        generate_num = (5000, 500, 500)  # 训练集,验证集和测试集数量
        alpha = 1e-3  # 学习率
        Epoch = 100  # 训练轮次
        batch_size = 64     # 批次数量
        keep_prob = 0.5     # dropout比例
        print_per_batch = 20    # 每多少次输出结果
        save_per_batch = 20		# 每多少次写入tensorboard
    
    
    生成验证码(class Generate
    • 验证码图片示例:

    0478

    • check_path():检查文件夹是否存在,如不存在则创建。
    • gen_captcha():生成验证码方法,写入之前检查是否以存在,如存在重新生成。

    读取数据(classs ReadData

    • read_data():返回图片数组(numpy.array格式)和标签(即文件名);

    • label2vec():将文件名转为向量;

      • 例:

        label = '1327'
        
        label_vec = [0,1,0,0,0,0,0,0,0,0,
        		    0,0,0,1,0,0,0,0,0,0,
        		    0,0,1,0,0,0,0,0,0,0,
        		    0,0,0,0,0,0,0,1,0,0]
        
    • load_data():加载文件夹下所有图片,返回图片数组,标签和图片数量。

    定义模型(cnn_model

    采用三层卷积,filter_size均为5,为避免过拟合,每层卷积后面均接dropout操作,最终将$16060$的图像转为$208$的矩阵。

    • 大致结构如下:
      模型结构

    训练&评估

    • next_batch():迭代器,分批次返还数据;
    • feed_data():给模型“喂”数据;
      • x:图像数组;
      • y:图像标签;
      • keep_prob:dropout比例;
    • evaluate():模型评估,用于验证集和测试集。
    • run_model():训练&评估

    目前效果

    目前经过4000次迭代训练集准确率可达99%以上,测试集准确率93%,还是存在一点过拟合,不过现在模型是基于CPU训练的,完成一次训练耗费时间大约4个小时左右,后续调整了再进行更新。

    Images for train :10000, for validation : 1000, for test : 1000
    Epoch : 1
    Step     0, train_acc:   7.42%, train_loss:  1.43, val_acc:   9.85%, val_loss:  1.40, improved:*  
    Step    20, train_acc:  12.50%, train_loss:  0.46, val_acc:  10.35%, val_loss:  0.46, improved:*  
    Step    40, train_acc:   9.38%, train_loss:  0.37, val_acc:  10.10%, val_loss:  0.37, improved:   
    Step    60, train_acc:   7.42%, train_loss:  0.34, val_acc:  10.25%, val_loss:  0.34, improved:   
    Step    80, train_acc:   7.81%, train_loss:  0.33, val_acc:   9.82%, val_loss:  0.33, improved:   
    Step   100, train_acc:  12.11%, train_loss:  0.33, val_acc:  10.00%, val_loss:  0.33, improved:   
    Step   120, train_acc:   9.77%, train_loss:  0.33, val_acc:  10.07%, val_loss:  0.33, improved:   
    Step   140, train_acc:   8.98%, train_loss:  0.33, val_acc:  10.40%, val_loss:  0.33, improved:*  
    Epoch : 2
    Step   160, train_acc:   8.20%, train_loss:  0.33, val_acc:  10.52%, val_loss:  0.33, improved:*  
    ...
    Epoch : 51
    Step  7860, train_acc: 100.00%, train_loss:  0.01, val_acc:  92.37%, val_loss:  0.08, improved:   
    Step  7880, train_acc:  99.61%, train_loss:  0.01, val_acc:  92.28%, val_loss:  0.08, improved:   
    Step  7900, train_acc: 100.00%, train_loss:  0.01, val_acc:  92.42%, val_loss:  0.08, improved:   
    Step  7920, train_acc: 100.00%, train_loss:  0.00, val_acc:  92.83%, val_loss:  0.08, improved:   
    Step  7940, train_acc: 100.00%, train_loss:  0.01, val_acc:  92.77%, val_loss:  0.08, improved:   
    Step  7960, train_acc: 100.00%, train_loss:  0.01, val_acc:  92.68%, val_loss:  0.08, improved:   
    Step  7980, train_acc: 100.00%, train_loss:  0.00, val_acc:  92.63%, val_loss:  0.09, improved:   
    No improvement for over 1000 steps, auto-stopping....
    Test accuracy:  93.00%, loss:  0.08
    
    • Tensorboard
      每次训练之前将Tensorboard路径下的文件删除,不然趋势图上会凌乱。
      • Accurracy
      • loss
  • 相关阅读:
    安装python模块时出现:error: Setup script exited with error: command 'gcc' failed with exit status 1
    Thunderbird设置邮件回复时自动签名和邮件引用的位置
    php脚本获取管道的输入数据
    xx is not in the sudoers file
    ubuntu快捷键设置
    (一) solr的安装与配置
    经典地址收集
    VS 2008如何连接TFS 2010
    SQL Server判断对象是否存在(整理中...)
    C++] WAP GPRS 向WWW网站 提交POST GET 数据 实例
  • 原文地址:https://www.cnblogs.com/awesometang/p/11991761.html
Copyright © 2020-2023  润新知